Loading…
Modulation of neuronal firing: what role can nanotechnology play?
[...]patch-clamp techniques provide a higher signal-to-noise ratio and target single cells but are limited to simultaneously recording couples of neurons at best. [...]this U-shaped transistor solution does not allow cell stimulation. The authors show a light-mediated depolarization of retinal gangl...
Saved in:
Published in: | Nanomedicine (London, England) England), 2020-12, Vol.15 (30), p.2895-2900 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-a12384ecfbae1bc5e6cced45e29af7916c14b449108eee9f199b7873319b8efa3 |
container_end_page | 2900 |
container_issue | 30 |
container_start_page | 2895 |
container_title | Nanomedicine (London, England) |
container_volume | 15 |
creator | Colombo, Elisabetta Di Marco, Stefano Castagnola, Valentina DiFrancesco, Mattia Lorenzo Maya-Vetencourt, José Fernando Manfredi, Giovanni Lanzani, Guglielmo Benfenati, Fabio |
description | [...]patch-clamp techniques provide a higher signal-to-noise ratio and target single cells but are limited to simultaneously recording couples of neurons at best. [...]this U-shaped transistor solution does not allow cell stimulation. The authors show a light-mediated depolarization of retinal ganglion cells by patch-clamp experiments on explanted retinas from a mouse model of photoreceptor degeneration (Rd1 mice), and a mild restoration of the light sensitivity through visually evoked potentials in the same animal model after subretinal implantation in vivo (14). In the sight of a safe and efficient translation of nanoparticles for neural stimulation into clinical trials, several in vitro and in vivo studies are devoted to nanostructures biodistribution and fate, blood-brain barriercrossing, and neuronal viability (15,16). |
doi_str_mv | 10.2217/nnm-2020-0398 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2461002465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487460605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-a12384ecfbae1bc5e6cced45e29af7916c14b449108eee9f199b7873319b8efa3</originalsourceid><addsrcrecordid>eNp1kMtLAzEQh4MotlaPXmXBi5fVPPaReJFSfEHFi55DNp20W9KkJrtI_3t33epB8JLJwDc_Zj6Ezgm-ppSUN85tUoopTjET_ACNSZnxtBAFO_z-szTnXIzQSYxrjHNOCT5GI8aIIDwXYzR98YvWqqb2LvEmcdAG75RNTB1qt7xNPleqSYK3kGjlEqecb0CvnLd-uUu2Vu3uTtGRUTbC2b5O0PvD_dvsKZ2_Pj7PpvNUM1o2qSKU8Qy0qRSQSudQaA2LLAcqlCkFKTTJqiwTBHMAEIYIUZW87DetOBjFJuhqyN0G_9FCbOSmjhqsVQ58GyXNCoJx9-YdevkHXfs2dGf1FC-zAhe4p9KB0sHHGMDIbag3KuwkwbJ3Kzu3sncre7cdf7FPbasNLH7pH5kdIAbAtE0bIOoanAY5dN1ErWsH_4R_AZqKiAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487460605</pqid></control><display><type>article</type><title>Modulation of neuronal firing: what role can nanotechnology play?</title><source>Open Access: PubMed Central</source><creator>Colombo, Elisabetta ; Di Marco, Stefano ; Castagnola, Valentina ; DiFrancesco, Mattia Lorenzo ; Maya-Vetencourt, José Fernando ; Manfredi, Giovanni ; Lanzani, Guglielmo ; Benfenati, Fabio</creator><creatorcontrib>Colombo, Elisabetta ; Di Marco, Stefano ; Castagnola, Valentina ; DiFrancesco, Mattia Lorenzo ; Maya-Vetencourt, José Fernando ; Manfredi, Giovanni ; Lanzani, Guglielmo ; Benfenati, Fabio</creatorcontrib><description>[...]patch-clamp techniques provide a higher signal-to-noise ratio and target single cells but are limited to simultaneously recording couples of neurons at best. [...]this U-shaped transistor solution does not allow cell stimulation. The authors show a light-mediated depolarization of retinal ganglion cells by patch-clamp experiments on explanted retinas from a mouse model of photoreceptor degeneration (Rd1 mice), and a mild restoration of the light sensitivity through visually evoked potentials in the same animal model after subretinal implantation in vivo (14). In the sight of a safe and efficient translation of nanoparticles for neural stimulation into clinical trials, several in vitro and in vivo studies are devoted to nanostructures biodistribution and fate, blood-brain barriercrossing, and neuronal viability (15,16).</description><identifier>ISSN: 1743-5889</identifier><identifier>EISSN: 1748-6963</identifier><identifier>DOI: 10.2217/nnm-2020-0398</identifier><identifier>PMID: 33191859</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Clinical trials ; Electrodes ; Graphene ; Magnetic fields ; nanoelectrodes ; Nanomaterials ; Nanoparticles ; Nanostructured materials ; Nanotechnology ; Nanowires ; neural stimulation ; Prostheses ; Signal to noise ratio ; Transistors</subject><ispartof>Nanomedicine (London, England), 2020-12, Vol.15 (30), p.2895-2900</ispartof><rights>2020 Future Medicine Ltd</rights><rights>Copyright Future Medicine Ltd Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-a12384ecfbae1bc5e6cced45e29af7916c14b449108eee9f199b7873319b8efa3</cites><orcidid>0000-0002-0653-8368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33191859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colombo, Elisabetta</creatorcontrib><creatorcontrib>Di Marco, Stefano</creatorcontrib><creatorcontrib>Castagnola, Valentina</creatorcontrib><creatorcontrib>DiFrancesco, Mattia Lorenzo</creatorcontrib><creatorcontrib>Maya-Vetencourt, José Fernando</creatorcontrib><creatorcontrib>Manfredi, Giovanni</creatorcontrib><creatorcontrib>Lanzani, Guglielmo</creatorcontrib><creatorcontrib>Benfenati, Fabio</creatorcontrib><title>Modulation of neuronal firing: what role can nanotechnology play?</title><title>Nanomedicine (London, England)</title><addtitle>Nanomedicine (Lond)</addtitle><description>[...]patch-clamp techniques provide a higher signal-to-noise ratio and target single cells but are limited to simultaneously recording couples of neurons at best. [...]this U-shaped transistor solution does not allow cell stimulation. The authors show a light-mediated depolarization of retinal ganglion cells by patch-clamp experiments on explanted retinas from a mouse model of photoreceptor degeneration (Rd1 mice), and a mild restoration of the light sensitivity through visually evoked potentials in the same animal model after subretinal implantation in vivo (14). In the sight of a safe and efficient translation of nanoparticles for neural stimulation into clinical trials, several in vitro and in vivo studies are devoted to nanostructures biodistribution and fate, blood-brain barriercrossing, and neuronal viability (15,16).</description><subject>Clinical trials</subject><subject>Electrodes</subject><subject>Graphene</subject><subject>Magnetic fields</subject><subject>nanoelectrodes</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>neural stimulation</subject><subject>Prostheses</subject><subject>Signal to noise ratio</subject><subject>Transistors</subject><issn>1743-5889</issn><issn>1748-6963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLAzEQh4MotlaPXmXBi5fVPPaReJFSfEHFi55DNp20W9KkJrtI_3t33epB8JLJwDc_Zj6Ezgm-ppSUN85tUoopTjET_ACNSZnxtBAFO_z-szTnXIzQSYxrjHNOCT5GI8aIIDwXYzR98YvWqqb2LvEmcdAG75RNTB1qt7xNPleqSYK3kGjlEqecb0CvnLd-uUu2Vu3uTtGRUTbC2b5O0PvD_dvsKZ2_Pj7PpvNUM1o2qSKU8Qy0qRSQSudQaA2LLAcqlCkFKTTJqiwTBHMAEIYIUZW87DetOBjFJuhqyN0G_9FCbOSmjhqsVQ58GyXNCoJx9-YdevkHXfs2dGf1FC-zAhe4p9KB0sHHGMDIbag3KuwkwbJ3Kzu3sncre7cdf7FPbasNLH7pH5kdIAbAtE0bIOoanAY5dN1ErWsH_4R_AZqKiAE</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Colombo, Elisabetta</creator><creator>Di Marco, Stefano</creator><creator>Castagnola, Valentina</creator><creator>DiFrancesco, Mattia Lorenzo</creator><creator>Maya-Vetencourt, José Fernando</creator><creator>Manfredi, Giovanni</creator><creator>Lanzani, Guglielmo</creator><creator>Benfenati, Fabio</creator><general>Future Medicine Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0653-8368</orcidid></search><sort><creationdate>20201201</creationdate><title>Modulation of neuronal firing: what role can nanotechnology play?</title><author>Colombo, Elisabetta ; Di Marco, Stefano ; Castagnola, Valentina ; DiFrancesco, Mattia Lorenzo ; Maya-Vetencourt, José Fernando ; Manfredi, Giovanni ; Lanzani, Guglielmo ; Benfenati, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-a12384ecfbae1bc5e6cced45e29af7916c14b449108eee9f199b7873319b8efa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clinical trials</topic><topic>Electrodes</topic><topic>Graphene</topic><topic>Magnetic fields</topic><topic>nanoelectrodes</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>neural stimulation</topic><topic>Prostheses</topic><topic>Signal to noise ratio</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombo, Elisabetta</creatorcontrib><creatorcontrib>Di Marco, Stefano</creatorcontrib><creatorcontrib>Castagnola, Valentina</creatorcontrib><creatorcontrib>DiFrancesco, Mattia Lorenzo</creatorcontrib><creatorcontrib>Maya-Vetencourt, José Fernando</creatorcontrib><creatorcontrib>Manfredi, Giovanni</creatorcontrib><creatorcontrib>Lanzani, Guglielmo</creatorcontrib><creatorcontrib>Benfenati, Fabio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>UK & Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Nanomedicine (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colombo, Elisabetta</au><au>Di Marco, Stefano</au><au>Castagnola, Valentina</au><au>DiFrancesco, Mattia Lorenzo</au><au>Maya-Vetencourt, José Fernando</au><au>Manfredi, Giovanni</au><au>Lanzani, Guglielmo</au><au>Benfenati, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of neuronal firing: what role can nanotechnology play?</atitle><jtitle>Nanomedicine (London, England)</jtitle><addtitle>Nanomedicine (Lond)</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>15</volume><issue>30</issue><spage>2895</spage><epage>2900</epage><pages>2895-2900</pages><issn>1743-5889</issn><eissn>1748-6963</eissn><abstract>[...]patch-clamp techniques provide a higher signal-to-noise ratio and target single cells but are limited to simultaneously recording couples of neurons at best. [...]this U-shaped transistor solution does not allow cell stimulation. The authors show a light-mediated depolarization of retinal ganglion cells by patch-clamp experiments on explanted retinas from a mouse model of photoreceptor degeneration (Rd1 mice), and a mild restoration of the light sensitivity through visually evoked potentials in the same animal model after subretinal implantation in vivo (14). In the sight of a safe and efficient translation of nanoparticles for neural stimulation into clinical trials, several in vitro and in vivo studies are devoted to nanostructures biodistribution and fate, blood-brain barriercrossing, and neuronal viability (15,16).</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>33191859</pmid><doi>10.2217/nnm-2020-0398</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0653-8368</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1743-5889 |
ispartof | Nanomedicine (London, England), 2020-12, Vol.15 (30), p.2895-2900 |
issn | 1743-5889 1748-6963 |
language | eng |
recordid | cdi_proquest_miscellaneous_2461002465 |
source | Open Access: PubMed Central |
subjects | Clinical trials Electrodes Graphene Magnetic fields nanoelectrodes Nanomaterials Nanoparticles Nanostructured materials Nanotechnology Nanowires neural stimulation Prostheses Signal to noise ratio Transistors |
title | Modulation of neuronal firing: what role can nanotechnology play? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20neuronal%20firing:%20what%20role%20can%20nanotechnology%20play?&rft.jtitle=Nanomedicine%20(London,%20England)&rft.au=Colombo,%20Elisabetta&rft.date=2020-12-01&rft.volume=15&rft.issue=30&rft.spage=2895&rft.epage=2900&rft.pages=2895-2900&rft.issn=1743-5889&rft.eissn=1748-6963&rft_id=info:doi/10.2217/nnm-2020-0398&rft_dat=%3Cproquest_cross%3E2487460605%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-a12384ecfbae1bc5e6cced45e29af7916c14b449108eee9f199b7873319b8efa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487460605&rft_id=info:pmid/33191859&rfr_iscdi=true |