Loading…
Introgression of a novel cold and drought regulatory‐protein encoding CORA‐like gene, SbCDR, induced osmotic tolerance in transgenic tobacco
A potent cold and drought regulatory‐protein encoding gene, SbCDR was cloned from an extreme halophyte Salicornia brachiata. In vitro localisation study, performed with SbCDR::RFP gene‐construct revealed that SbCDR is a membrane protein. Overexpression of the SbCDR gene in tobacco plants confirmed t...
Saved in:
Published in: | Physiologia plantarum 2021-06, Vol.172 (2), p.1170-1188 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3530-1109e7aec2ce237ca3297ac6ed6557336cf649b021533be83265c5ef31442a1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3530-1109e7aec2ce237ca3297ac6ed6557336cf649b021533be83265c5ef31442a1e3 |
container_end_page | 1188 |
container_issue | 2 |
container_start_page | 1170 |
container_title | Physiologia plantarum |
container_volume | 172 |
creator | Jha, Rajesh Kumar Patel, Jaykumar Patel, Manish Kumar Mishra, Avinash Jha, Bhavanath |
description | A potent cold and drought regulatory‐protein encoding gene, SbCDR was cloned from an extreme halophyte Salicornia brachiata. In vitro localisation study, performed with SbCDR::RFP gene‐construct revealed that SbCDR is a membrane protein. Overexpression of the SbCDR gene in tobacco plants confirmed tolerance against major environmental constraints such as salinity, drought and cold, as evidenced by improved chlorophyll contents, plant morphology, plant biomass, root length, shoot length and seed germination efficiency. Transgenic lines also exhibited high accumulation of proline, total sugar, reducing sugar, free amino acid and polyphenol, besides the low level of malondialdehyde (MDA) contents. SbCDR transgenic lines showed better relative water contents, membrane stability index and osmotic water potential. Furthermore, higher expression of ROS scavenging genes was observed in transgenic lines under stress. Moreover, microarray analysis revealed that several host genes were upregulated and downregulated under drought and salt stress conditions in SbCDR transgenic line compared with control (WT) plants. The results demonstrated that the overexpression of the halophytic SbCDR gene has intense effects on the abiotic stress tolerance of transgenic tobacco plants. However, the exact mode of action of SbCDR in multiple abiotic stress tolerance of plants is yet to be unveiled. It is believed that the precise role of SbCDR gene will provide additional information to comprehend the abiotic stress tolerance mechanism. Furthermore, it will appear as a promising candidate gene for improving stress tolerance in different crop plants for sustainable agriculture and crop productivity. |
doi_str_mv | 10.1111/ppl.13280 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2461855900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461855900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3530-1109e7aec2ce237ca3297ac6ed6557336cf649b021533be83265c5ef31442a1e3</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhy0EosvCgRdAlriA1LS2J3Y2x2r5V2mlVgXOluNMgovX3toJaG88Qp-RJ8F0CwckfLE1_vRpZn6EPOfshJdzutv5Ew5ixR6QBYe2rYDJ-iFZMAa8aoE3R-RJzteMcaW4eEyOAARTNVcLcnsephTHhDm7GGgcqKEhfkNPbfQ9NaGnfYrz-GWiCcfZmymm_c8ft7sUJ3SBYrCxd2Gk64urs1L37ivSEQMe04_d-s3VMXWhny32NOZtnJylU_SYTLBYfuhUXrngd_XOWBufkkeD8Rmf3d9L8vnd20_rD9Xm4v35-mxTWZDAKs5Zi41BKywKaKwB0TbGKuyVlA2AsoOq244JLgE6XIFQ0kocgNe1MBxhSV4dvGWSmxnzpLcuW_TeBIxz1qJWfCVlW3a4JC__Qa_jnELpTotiZ02hRKFeHyibYs4JB71LbmvSXnOmf8ekS0z6LqbCvrg3zt0W-7_kn1wKcHoAvjuP-_-b9OXl5qD8BRP4nmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533075902</pqid></control><display><type>article</type><title>Introgression of a novel cold and drought regulatory‐protein encoding CORA‐like gene, SbCDR, induced osmotic tolerance in transgenic tobacco</title><source>Wiley</source><creator>Jha, Rajesh Kumar ; Patel, Jaykumar ; Patel, Manish Kumar ; Mishra, Avinash ; Jha, Bhavanath</creator><creatorcontrib>Jha, Rajesh Kumar ; Patel, Jaykumar ; Patel, Manish Kumar ; Mishra, Avinash ; Jha, Bhavanath</creatorcontrib><description>A potent cold and drought regulatory‐protein encoding gene, SbCDR was cloned from an extreme halophyte Salicornia brachiata. In vitro localisation study, performed with SbCDR::RFP gene‐construct revealed that SbCDR is a membrane protein. Overexpression of the SbCDR gene in tobacco plants confirmed tolerance against major environmental constraints such as salinity, drought and cold, as evidenced by improved chlorophyll contents, plant morphology, plant biomass, root length, shoot length and seed germination efficiency. Transgenic lines also exhibited high accumulation of proline, total sugar, reducing sugar, free amino acid and polyphenol, besides the low level of malondialdehyde (MDA) contents. SbCDR transgenic lines showed better relative water contents, membrane stability index and osmotic water potential. Furthermore, higher expression of ROS scavenging genes was observed in transgenic lines under stress. Moreover, microarray analysis revealed that several host genes were upregulated and downregulated under drought and salt stress conditions in SbCDR transgenic line compared with control (WT) plants. The results demonstrated that the overexpression of the halophytic SbCDR gene has intense effects on the abiotic stress tolerance of transgenic tobacco plants. However, the exact mode of action of SbCDR in multiple abiotic stress tolerance of plants is yet to be unveiled. It is believed that the precise role of SbCDR gene will provide additional information to comprehend the abiotic stress tolerance mechanism. Furthermore, it will appear as a promising candidate gene for improving stress tolerance in different crop plants for sustainable agriculture and crop productivity.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.13280</identifier><identifier>PMID: 33206416</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Abiotic stress ; Amino acids ; Chlorophyll ; Cold tolerance ; Crop production ; DNA microarrays ; Drought ; Droughts ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Germination ; halophyte ; Halophytes ; Low level ; Malondialdehyde ; Membrane proteins ; Membranes ; Mode of action ; Morphology ; Nicotiana - genetics ; Nicotiana - metabolism ; Plant biomass ; Plant morphology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Proline ; Proteins ; salinity ; Scavenging ; Seed germination ; Stress, Physiological - genetics ; Sugar ; Sustainable agriculture ; Tobacco ; Tobacco industry ; transgenic ; Transgenic plants ; Water potential</subject><ispartof>Physiologia plantarum, 2021-06, Vol.172 (2), p.1170-1188</ispartof><rights>2020 Scandinavian Plant Physiology Society</rights><rights>2020 Scandinavian Plant Physiology Society.</rights><rights>2021 Scandinavian Plant Physiology Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3530-1109e7aec2ce237ca3297ac6ed6557336cf649b021533be83265c5ef31442a1e3</citedby><cites>FETCH-LOGICAL-c3530-1109e7aec2ce237ca3297ac6ed6557336cf649b021533be83265c5ef31442a1e3</cites><orcidid>0000-0003-0342-010X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33206416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jha, Rajesh Kumar</creatorcontrib><creatorcontrib>Patel, Jaykumar</creatorcontrib><creatorcontrib>Patel, Manish Kumar</creatorcontrib><creatorcontrib>Mishra, Avinash</creatorcontrib><creatorcontrib>Jha, Bhavanath</creatorcontrib><title>Introgression of a novel cold and drought regulatory‐protein encoding CORA‐like gene, SbCDR, induced osmotic tolerance in transgenic tobacco</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>A potent cold and drought regulatory‐protein encoding gene, SbCDR was cloned from an extreme halophyte Salicornia brachiata. In vitro localisation study, performed with SbCDR::RFP gene‐construct revealed that SbCDR is a membrane protein. Overexpression of the SbCDR gene in tobacco plants confirmed tolerance against major environmental constraints such as salinity, drought and cold, as evidenced by improved chlorophyll contents, plant morphology, plant biomass, root length, shoot length and seed germination efficiency. Transgenic lines also exhibited high accumulation of proline, total sugar, reducing sugar, free amino acid and polyphenol, besides the low level of malondialdehyde (MDA) contents. SbCDR transgenic lines showed better relative water contents, membrane stability index and osmotic water potential. Furthermore, higher expression of ROS scavenging genes was observed in transgenic lines under stress. Moreover, microarray analysis revealed that several host genes were upregulated and downregulated under drought and salt stress conditions in SbCDR transgenic line compared with control (WT) plants. The results demonstrated that the overexpression of the halophytic SbCDR gene has intense effects on the abiotic stress tolerance of transgenic tobacco plants. However, the exact mode of action of SbCDR in multiple abiotic stress tolerance of plants is yet to be unveiled. It is believed that the precise role of SbCDR gene will provide additional information to comprehend the abiotic stress tolerance mechanism. Furthermore, it will appear as a promising candidate gene for improving stress tolerance in different crop plants for sustainable agriculture and crop productivity.</description><subject>Abiotic stress</subject><subject>Amino acids</subject><subject>Chlorophyll</subject><subject>Cold tolerance</subject><subject>Crop production</subject><subject>DNA microarrays</subject><subject>Drought</subject><subject>Droughts</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Germination</subject><subject>halophyte</subject><subject>Halophytes</subject><subject>Low level</subject><subject>Malondialdehyde</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Mode of action</subject><subject>Morphology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Plant biomass</subject><subject>Plant morphology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Proline</subject><subject>Proteins</subject><subject>salinity</subject><subject>Scavenging</subject><subject>Seed germination</subject><subject>Stress, Physiological - genetics</subject><subject>Sugar</subject><subject>Sustainable agriculture</subject><subject>Tobacco</subject><subject>Tobacco industry</subject><subject>transgenic</subject><subject>Transgenic plants</subject><subject>Water potential</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQhy0EosvCgRdAlriA1LS2J3Y2x2r5V2mlVgXOluNMgovX3toJaG88Qp-RJ8F0CwckfLE1_vRpZn6EPOfshJdzutv5Ew5ixR6QBYe2rYDJ-iFZMAa8aoE3R-RJzteMcaW4eEyOAARTNVcLcnsephTHhDm7GGgcqKEhfkNPbfQ9NaGnfYrz-GWiCcfZmymm_c8ft7sUJ3SBYrCxd2Gk64urs1L37ivSEQMe04_d-s3VMXWhny32NOZtnJylU_SYTLBYfuhUXrngd_XOWBufkkeD8Rmf3d9L8vnd20_rD9Xm4v35-mxTWZDAKs5Zi41BKywKaKwB0TbGKuyVlA2AsoOq244JLgE6XIFQ0kocgNe1MBxhSV4dvGWSmxnzpLcuW_TeBIxz1qJWfCVlW3a4JC__Qa_jnELpTotiZ02hRKFeHyibYs4JB71LbmvSXnOmf8ekS0z6LqbCvrg3zt0W-7_kn1wKcHoAvjuP-_-b9OXl5qD8BRP4nmM</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Jha, Rajesh Kumar</creator><creator>Patel, Jaykumar</creator><creator>Patel, Manish Kumar</creator><creator>Mishra, Avinash</creator><creator>Jha, Bhavanath</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0342-010X</orcidid></search><sort><creationdate>202106</creationdate><title>Introgression of a novel cold and drought regulatory‐protein encoding CORA‐like gene, SbCDR, induced osmotic tolerance in transgenic tobacco</title><author>Jha, Rajesh Kumar ; Patel, Jaykumar ; Patel, Manish Kumar ; Mishra, Avinash ; Jha, Bhavanath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3530-1109e7aec2ce237ca3297ac6ed6557336cf649b021533be83265c5ef31442a1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Amino acids</topic><topic>Chlorophyll</topic><topic>Cold tolerance</topic><topic>Crop production</topic><topic>DNA microarrays</topic><topic>Drought</topic><topic>Droughts</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Germination</topic><topic>halophyte</topic><topic>Halophytes</topic><topic>Low level</topic><topic>Malondialdehyde</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Mode of action</topic><topic>Morphology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Plant biomass</topic><topic>Plant morphology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Proline</topic><topic>Proteins</topic><topic>salinity</topic><topic>Scavenging</topic><topic>Seed germination</topic><topic>Stress, Physiological - genetics</topic><topic>Sugar</topic><topic>Sustainable agriculture</topic><topic>Tobacco</topic><topic>Tobacco industry</topic><topic>transgenic</topic><topic>Transgenic plants</topic><topic>Water potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Rajesh Kumar</creatorcontrib><creatorcontrib>Patel, Jaykumar</creatorcontrib><creatorcontrib>Patel, Manish Kumar</creatorcontrib><creatorcontrib>Mishra, Avinash</creatorcontrib><creatorcontrib>Jha, Bhavanath</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jha, Rajesh Kumar</au><au>Patel, Jaykumar</au><au>Patel, Manish Kumar</au><au>Mishra, Avinash</au><au>Jha, Bhavanath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introgression of a novel cold and drought regulatory‐protein encoding CORA‐like gene, SbCDR, induced osmotic tolerance in transgenic tobacco</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2021-06</date><risdate>2021</risdate><volume>172</volume><issue>2</issue><spage>1170</spage><epage>1188</epage><pages>1170-1188</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>A potent cold and drought regulatory‐protein encoding gene, SbCDR was cloned from an extreme halophyte Salicornia brachiata. In vitro localisation study, performed with SbCDR::RFP gene‐construct revealed that SbCDR is a membrane protein. Overexpression of the SbCDR gene in tobacco plants confirmed tolerance against major environmental constraints such as salinity, drought and cold, as evidenced by improved chlorophyll contents, plant morphology, plant biomass, root length, shoot length and seed germination efficiency. Transgenic lines also exhibited high accumulation of proline, total sugar, reducing sugar, free amino acid and polyphenol, besides the low level of malondialdehyde (MDA) contents. SbCDR transgenic lines showed better relative water contents, membrane stability index and osmotic water potential. Furthermore, higher expression of ROS scavenging genes was observed in transgenic lines under stress. Moreover, microarray analysis revealed that several host genes were upregulated and downregulated under drought and salt stress conditions in SbCDR transgenic line compared with control (WT) plants. The results demonstrated that the overexpression of the halophytic SbCDR gene has intense effects on the abiotic stress tolerance of transgenic tobacco plants. However, the exact mode of action of SbCDR in multiple abiotic stress tolerance of plants is yet to be unveiled. It is believed that the precise role of SbCDR gene will provide additional information to comprehend the abiotic stress tolerance mechanism. Furthermore, it will appear as a promising candidate gene for improving stress tolerance in different crop plants for sustainable agriculture and crop productivity.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>33206416</pmid><doi>10.1111/ppl.13280</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0342-010X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9317 |
ispartof | Physiologia plantarum, 2021-06, Vol.172 (2), p.1170-1188 |
issn | 0031-9317 1399-3054 |
language | eng |
recordid | cdi_proquest_miscellaneous_2461855900 |
source | Wiley |
subjects | Abiotic stress Amino acids Chlorophyll Cold tolerance Crop production DNA microarrays Drought Droughts Gene expression Gene Expression Regulation, Plant Genes Germination halophyte Halophytes Low level Malondialdehyde Membrane proteins Membranes Mode of action Morphology Nicotiana - genetics Nicotiana - metabolism Plant biomass Plant morphology Plant Proteins - genetics Plant Proteins - metabolism Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Proline Proteins salinity Scavenging Seed germination Stress, Physiological - genetics Sugar Sustainable agriculture Tobacco Tobacco industry transgenic Transgenic plants Water potential |
title | Introgression of a novel cold and drought regulatory‐protein encoding CORA‐like gene, SbCDR, induced osmotic tolerance in transgenic tobacco |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introgression%20of%20a%20novel%20cold%20and%20drought%20regulatory%E2%80%90protein%20encoding%20CORA%E2%80%90like%20gene,%20SbCDR,%20induced%20osmotic%20tolerance%20in%20transgenic%20tobacco&rft.jtitle=Physiologia%20plantarum&rft.au=Jha,%20Rajesh%20Kumar&rft.date=2021-06&rft.volume=172&rft.issue=2&rft.spage=1170&rft.epage=1188&rft.pages=1170-1188&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.13280&rft_dat=%3Cproquest_cross%3E2461855900%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3530-1109e7aec2ce237ca3297ac6ed6557336cf649b021533be83265c5ef31442a1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533075902&rft_id=info:pmid/33206416&rfr_iscdi=true |