Loading…
Towards kinetic control of coordination self-assembly: a case study of a Pd3L6 double-walled triangle to predict the outcomes by a reaction network model
Numerical analysis of self-assembly process (NASAP) was performed for a [Pd3L6]6+ double-walled triangle (DWT) complex. With a chemical reaction network and a parameter set of the reaction rate constants obtained from a numerical search in an eighteen-dimensional parameter space to obtain a good fit...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2020-01, Vol.22 (45), p.26614-26626 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical analysis of self-assembly process (NASAP) was performed for a [Pd3L6]6+ double-walled triangle (DWT) complex. With a chemical reaction network and a parameter set of the reaction rate constants obtained from a numerical search in an eighteen-dimensional parameter space to obtain a good fit to the data from the experimental counterpart (quantitative analysis of self-assembly process, QASAP), a refined calculation resulted in a detailed time evolution of each molecular species. Analysis based on those clues revealed dominant self-assembly pathways and a balance between inter- and intramolecular reactions, and enabled prediction of the reaction outcomes depending on the initial stoichiometric ratio under kinetic control. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d0cp04623j |