Loading…

Scaffold‐free biofabrication of adipocyte structures with magnetic levitation

Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold‐based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterili...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2021-03, Vol.118 (3), p.1127-1140
Main Authors: Sarigil, Oyku, Anil‐Inevi, Muge, Firatligil‐Yildirir, Burcu, Unal, Yagmur Ceren, Yalcin‐Ozuysal, Ozden, Mese, Gulistan, Tekin, H. Cumhur, Ozcivici, Engin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3901-f40adff949ca6c11fdb47677fbb7d7b764c8b9f9012c348a69be7056a508ff183
cites cdi_FETCH-LOGICAL-c3901-f40adff949ca6c11fdb47677fbb7d7b764c8b9f9012c348a69be7056a508ff183
container_end_page 1140
container_issue 3
container_start_page 1127
container_title Biotechnology and bioengineering
container_volume 118
creator Sarigil, Oyku
Anil‐Inevi, Muge
Firatligil‐Yildirir, Burcu
Unal, Yagmur Ceren
Yalcin‐Ozuysal, Ozden
Mese, Gulistan
Tekin, H. Cumhur
Ozcivici, Engin
description Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold‐based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold‐free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label‐free magnetic levitation technique was used to form three‐dimensional (3D) scaffold‐free adipocyte structures with various fabrication strategies in a microcapillary‐based setup. Adipogenic‐differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.
doi_str_mv 10.1002/bit.27631
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2461863686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490487253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3901-f40adff949ca6c11fdb47677fbb7d7b764c8b9f9012c348a69be7056a508ff183</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgiq3VhS8gA250MW0ymUkmSy3-QaEL63pIMommTJuaZCzd-Qg-o09i7FQXgotwCXz3cDkAnCI4RBBmI2HCMKMEoz3QR5DRFGYM7oM-hJCkuGBZDxx5P49fWhJyCHoYZ7AoMe6D6aPkWtum_nz_0E6pRBiruXBG8mDsMrE64bVZWbkJKvHBtTK0TvlkbcJLsuDPSxWMTBr1ZsJ24RgcaN54dbKbA_B0ezMb36eT6d3D-GqSSswgSnUOea01y5nkRCKka5FTQqkWgtZUUJLLUjAdaSZxXnLChKKwILyApdaoxANw0eWunH1tlQ_VwnipmoYvlW19leUElQST-Abg_A-d29Yt43VRMZiXNCtwVJedks5675SuVs4suNtUCFbfLVex5WrbcrRnu8RWLFT9K39qjWDUgbVp1Ob_pOr6YdZFfgEVX4eT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490487253</pqid></control><display><type>article</type><title>Scaffold‐free biofabrication of adipocyte structures with magnetic levitation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sarigil, Oyku ; Anil‐Inevi, Muge ; Firatligil‐Yildirir, Burcu ; Unal, Yagmur Ceren ; Yalcin‐Ozuysal, Ozden ; Mese, Gulistan ; Tekin, H. Cumhur ; Ozcivici, Engin</creator><creatorcontrib>Sarigil, Oyku ; Anil‐Inevi, Muge ; Firatligil‐Yildirir, Burcu ; Unal, Yagmur Ceren ; Yalcin‐Ozuysal, Ozden ; Mese, Gulistan ; Tekin, H. Cumhur ; Ozcivici, Engin</creatorcontrib><description>Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold‐based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold‐free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label‐free magnetic levitation technique was used to form three‐dimensional (3D) scaffold‐free adipocyte structures with various fabrication strategies in a microcapillary‐based setup. Adipogenic‐differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27631</identifier><identifier>PMID: 33205833</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>A549 Cells ; Adipocytes ; Adipocytes - cytology ; Adipocytes - metabolism ; Adipogenesis ; Adipose tissue ; bone marrow stem cells ; Cell culture ; Cell Differentiation ; Cell therapy ; Engineering research ; Fabrication ; Humans ; Magnetic Fields ; Magnetic levitation ; Mechanical properties ; Scaffolds ; self‐assembly ; single cell studies ; Soft tissues ; Stem cells ; Sterilization ; Tissue Engineering ; Tissue Scaffolds ; Transplantation</subject><ispartof>Biotechnology and bioengineering, 2021-03, Vol.118 (3), p.1127-1140</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3901-f40adff949ca6c11fdb47677fbb7d7b764c8b9f9012c348a69be7056a508ff183</citedby><cites>FETCH-LOGICAL-c3901-f40adff949ca6c11fdb47677fbb7d7b764c8b9f9012c348a69be7056a508ff183</cites><orcidid>0000-0003-0552-368X ; 0000-0003-2854-3472 ; 0000-0002-1207-1653 ; 0000-0002-5758-5439 ; 0000-0001-8736-8251 ; 0000-0003-4464-0475 ; 0000-0001-8716-542X ; 0000-0003-0458-8684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33205833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarigil, Oyku</creatorcontrib><creatorcontrib>Anil‐Inevi, Muge</creatorcontrib><creatorcontrib>Firatligil‐Yildirir, Burcu</creatorcontrib><creatorcontrib>Unal, Yagmur Ceren</creatorcontrib><creatorcontrib>Yalcin‐Ozuysal, Ozden</creatorcontrib><creatorcontrib>Mese, Gulistan</creatorcontrib><creatorcontrib>Tekin, H. Cumhur</creatorcontrib><creatorcontrib>Ozcivici, Engin</creatorcontrib><title>Scaffold‐free biofabrication of adipocyte structures with magnetic levitation</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold‐based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold‐free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label‐free magnetic levitation technique was used to form three‐dimensional (3D) scaffold‐free adipocyte structures with various fabrication strategies in a microcapillary‐based setup. Adipogenic‐differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.</description><subject>A549 Cells</subject><subject>Adipocytes</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - metabolism</subject><subject>Adipogenesis</subject><subject>Adipose tissue</subject><subject>bone marrow stem cells</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell therapy</subject><subject>Engineering research</subject><subject>Fabrication</subject><subject>Humans</subject><subject>Magnetic Fields</subject><subject>Magnetic levitation</subject><subject>Mechanical properties</subject><subject>Scaffolds</subject><subject>self‐assembly</subject><subject>single cell studies</subject><subject>Soft tissues</subject><subject>Stem cells</subject><subject>Sterilization</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Transplantation</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgiq3VhS8gA250MW0ymUkmSy3-QaEL63pIMommTJuaZCzd-Qg-o09i7FQXgotwCXz3cDkAnCI4RBBmI2HCMKMEoz3QR5DRFGYM7oM-hJCkuGBZDxx5P49fWhJyCHoYZ7AoMe6D6aPkWtum_nz_0E6pRBiruXBG8mDsMrE64bVZWbkJKvHBtTK0TvlkbcJLsuDPSxWMTBr1ZsJ24RgcaN54dbKbA_B0ezMb36eT6d3D-GqSSswgSnUOea01y5nkRCKka5FTQqkWgtZUUJLLUjAdaSZxXnLChKKwILyApdaoxANw0eWunH1tlQ_VwnipmoYvlW19leUElQST-Abg_A-d29Yt43VRMZiXNCtwVJedks5675SuVs4suNtUCFbfLVex5WrbcrRnu8RWLFT9K39qjWDUgbVp1Ob_pOr6YdZFfgEVX4eT</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Sarigil, Oyku</creator><creator>Anil‐Inevi, Muge</creator><creator>Firatligil‐Yildirir, Burcu</creator><creator>Unal, Yagmur Ceren</creator><creator>Yalcin‐Ozuysal, Ozden</creator><creator>Mese, Gulistan</creator><creator>Tekin, H. Cumhur</creator><creator>Ozcivici, Engin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0552-368X</orcidid><orcidid>https://orcid.org/0000-0003-2854-3472</orcidid><orcidid>https://orcid.org/0000-0002-1207-1653</orcidid><orcidid>https://orcid.org/0000-0002-5758-5439</orcidid><orcidid>https://orcid.org/0000-0001-8736-8251</orcidid><orcidid>https://orcid.org/0000-0003-4464-0475</orcidid><orcidid>https://orcid.org/0000-0001-8716-542X</orcidid><orcidid>https://orcid.org/0000-0003-0458-8684</orcidid></search><sort><creationdate>202103</creationdate><title>Scaffold‐free biofabrication of adipocyte structures with magnetic levitation</title><author>Sarigil, Oyku ; Anil‐Inevi, Muge ; Firatligil‐Yildirir, Burcu ; Unal, Yagmur Ceren ; Yalcin‐Ozuysal, Ozden ; Mese, Gulistan ; Tekin, H. Cumhur ; Ozcivici, Engin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3901-f40adff949ca6c11fdb47677fbb7d7b764c8b9f9012c348a69be7056a508ff183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A549 Cells</topic><topic>Adipocytes</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - metabolism</topic><topic>Adipogenesis</topic><topic>Adipose tissue</topic><topic>bone marrow stem cells</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell therapy</topic><topic>Engineering research</topic><topic>Fabrication</topic><topic>Humans</topic><topic>Magnetic Fields</topic><topic>Magnetic levitation</topic><topic>Mechanical properties</topic><topic>Scaffolds</topic><topic>self‐assembly</topic><topic>single cell studies</topic><topic>Soft tissues</topic><topic>Stem cells</topic><topic>Sterilization</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarigil, Oyku</creatorcontrib><creatorcontrib>Anil‐Inevi, Muge</creatorcontrib><creatorcontrib>Firatligil‐Yildirir, Burcu</creatorcontrib><creatorcontrib>Unal, Yagmur Ceren</creatorcontrib><creatorcontrib>Yalcin‐Ozuysal, Ozden</creatorcontrib><creatorcontrib>Mese, Gulistan</creatorcontrib><creatorcontrib>Tekin, H. Cumhur</creatorcontrib><creatorcontrib>Ozcivici, Engin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarigil, Oyku</au><au>Anil‐Inevi, Muge</au><au>Firatligil‐Yildirir, Burcu</au><au>Unal, Yagmur Ceren</au><au>Yalcin‐Ozuysal, Ozden</au><au>Mese, Gulistan</au><au>Tekin, H. Cumhur</au><au>Ozcivici, Engin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaffold‐free biofabrication of adipocyte structures with magnetic levitation</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2021-03</date><risdate>2021</risdate><volume>118</volume><issue>3</issue><spage>1127</spage><epage>1140</epage><pages>1127-1140</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold‐based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold‐free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label‐free magnetic levitation technique was used to form three‐dimensional (3D) scaffold‐free adipocyte structures with various fabrication strategies in a microcapillary‐based setup. Adipogenic‐differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33205833</pmid><doi>10.1002/bit.27631</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0552-368X</orcidid><orcidid>https://orcid.org/0000-0003-2854-3472</orcidid><orcidid>https://orcid.org/0000-0002-1207-1653</orcidid><orcidid>https://orcid.org/0000-0002-5758-5439</orcidid><orcidid>https://orcid.org/0000-0001-8736-8251</orcidid><orcidid>https://orcid.org/0000-0003-4464-0475</orcidid><orcidid>https://orcid.org/0000-0001-8716-542X</orcidid><orcidid>https://orcid.org/0000-0003-0458-8684</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2021-03, Vol.118 (3), p.1127-1140
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2461863686
source Wiley-Blackwell Read & Publish Collection
subjects A549 Cells
Adipocytes
Adipocytes - cytology
Adipocytes - metabolism
Adipogenesis
Adipose tissue
bone marrow stem cells
Cell culture
Cell Differentiation
Cell therapy
Engineering research
Fabrication
Humans
Magnetic Fields
Magnetic levitation
Mechanical properties
Scaffolds
self‐assembly
single cell studies
Soft tissues
Stem cells
Sterilization
Tissue Engineering
Tissue Scaffolds
Transplantation
title Scaffold‐free biofabrication of adipocyte structures with magnetic levitation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaffold%E2%80%90free%20biofabrication%20of%20adipocyte%20structures%20with%20magnetic%20levitation&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Sarigil,%20Oyku&rft.date=2021-03&rft.volume=118&rft.issue=3&rft.spage=1127&rft.epage=1140&rft.pages=1127-1140&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27631&rft_dat=%3Cproquest_cross%3E2490487253%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3901-f40adff949ca6c11fdb47677fbb7d7b764c8b9f9012c348a69be7056a508ff183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490487253&rft_id=info:pmid/33205833&rfr_iscdi=true