Loading…

Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber

[Display omitted] Lightweight and high-efficiency microwave absorbers are determined by structure and composition of materials. In this research, a novel core-shell ZnFe2O4@MoS2 composite with a flower-like heterostructure was synthesized successfully by a facile hydrothermal process. The unique 3D...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2021-04, Vol.587, p.561-573
Main Authors: Wang, Yan, Di, Xiaochuang, Fu, Yuqiao, Wu, Xinming, Cao, Jitao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Lightweight and high-efficiency microwave absorbers are determined by structure and composition of materials. In this research, a novel core-shell ZnFe2O4@MoS2 composite with a flower-like heterostructure was synthesized successfully by a facile hydrothermal process. The unique 3D heterostructure (porous ZnFe2O4 and MoS2 nanosheets as core and outer shells, respectively) endows the synthesized sample with high-efficiency electromagnetic wave absorption performance. The exploration of microwave absorption properties reveals that the maximum reflection loss displayed by the ZnFe2O4@MoS2 composite is up to −61.8 dB at 9.5 GHz with a filler content of 20 wt%, and the corresponding effective bandwidth (RL exceeding −10 dB) achieves 5.8 GHz (from 7.2 to 13 GHz). The enhanced microwave absorption performance is benefitted by the porous core-shell structure, intense interfacial polarization, multiple reflections, matched impedance and favorable synergistic effect between ZnFe2O4 core and MoS2 shell. Consequently, this strategy provides inspiration for the design of novel microwave absorber with high-performance.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2020.11.013