Loading…
Efficient Preparation and Bioactivity Evaluation of Glycan-Defined Glycoproteins
Owing to the generation of heterogeneous glycoproteins in cells, it is highly difficult to study glycoprotein-mediated biological events and to develop biomedical agents. Thus, general and efficient methods to prepare homogeneous glycoproteins are in high demand. Herein, we report a general method f...
Saved in:
Published in: | ACS chemical biology 2021-10, Vol.16 (10), p.1930-1940 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Owing to the generation of heterogeneous glycoproteins in cells, it is highly difficult to study glycoprotein-mediated biological events and to develop biomedical agents. Thus, general and efficient methods to prepare homogeneous glycoproteins are in high demand. Herein, we report a general method for the efficient preparation of homogeneous glycoproteins that utilizes a combination of genetic code expansion and chemoselective ligation techniques. In the protocol to produce glycan-defined glycoproteins, an alkyne tag-containing protein, generated by genetic encoding of an alkynylated unnatural amino acid, was quantitatively coupled via click chemistry to versatile azide-appended glycans. The glycoproteins produced by the present strategy were found to recognize mammalian cell-surface lectins and enter the cells through lectin-mediated internalization. Also, cell studies exhibited that the glycoprotein containing multiple mannose-6-phosphate residues enters diseased cells lacking specific lysosomal glycosidases by binding to the cell-surface M6P receptor, and subsequently migrates to lysosomes for efficient degradation of stored glycosphingolipids. |
---|---|
ISSN: | 1554-8929 1554-8937 |
DOI: | 10.1021/acschembio.0c00629 |