Loading…

Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTA‐UC Performance

Six substituted ligands based upon 2‐(naphthalen‐1‐yl)quinoline‐4‐carboxylate and 2‐(naphthalen‐2‐yl)quinoline‐4‐carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII, yield...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2021-02, Vol.27 (10), p.3427-3439
Main Authors: Elgar, Christopher E., Otaif, Haleema Y., Zhang, Xue, Zhao, Jianzhang, Horton, Peter N., Coles, Simon J., Beames, Joseph M., Pope, Simon J. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4506-732d321035da36f97904e28ffba4415f100387011ac75694fc3a89246111403c3
cites cdi_FETCH-LOGICAL-c4506-732d321035da36f97904e28ffba4415f100387011ac75694fc3a89246111403c3
container_end_page 3439
container_issue 10
container_start_page 3427
container_title Chemistry : a European journal
container_volume 27
creator Elgar, Christopher E.
Otaif, Haleema Y.
Zhang, Xue
Zhao, Jianzhang
Horton, Peter N.
Coles, Simon J.
Beames, Joseph M.
Pope, Simon J. A.
description Six substituted ligands based upon 2‐(naphthalen‐1‐yl)quinoline‐4‐carboxylate and 2‐(naphthalen‐2‐yl)quinoline‐4‐carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII, yielding complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2′‐bipyridine). X‐ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis‐C,C and trans‐N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668–693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand‐centred versus MLCT character instilled by the facets of the ligand structure. Triplet–triplet annihilation upconversion (TTA‐UC) measurements demonstrate that the complexes based upon the 1‐naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6–6.7 %. Red, red shine: A series of substituted naphthylquinolines have been synthesised and investigated as cylcometallating ligands for IrIII. The resultant complexes were shown to be emissive in the deep‐red region and several were identified as viable photosensitisers for triplet–triplet annihilation upconversion.
doi_str_mv 10.1002/chem.202004146
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2464605897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464605897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4506-732d321035da36f97904e28ffba4415f100387011ac75694fc3a89246111403c3</originalsourceid><addsrcrecordid>eNqF0c1qGzEUBWBRWho37bbLIOgmXYyr_xl1Z4yTDLi0EHs9KBopUZiRHMlK8a6PkGfMk0TGSQrddCUQnw5X9wDwGaMpRoh80zdmnBJEEGKYiTdggjnBFa0FfwsmSLK6EpzKI_AhpVuEkBSUvgdHlBJGCOETMLbR9S6Pp23bfoWXxie3dcnEBJXv4cKbeL2D640O_r5cuuC_w9WNga23QzZeGxgsXLrrPb7cxqy3ORqYN8HD1Wr2-OdhPYe_TLQhjqroj-CdVUMyn57PY7A-W6zmF9Xy53k7ny0rzTgSVU1JTwlGlPeKCitriZghjbVXijHMbfk5bWqEsdI1F5JZTVUjCRMYY4aopsfg9JC7ieEum7TtRpe0GQblTcipK5QJxBtZF_rlH3obcvRluqIaiTlmDStqelA6hpSisd0mulHFXYdRty-i2xfRvRZRHpw8x-ar0fSv_GXzBcgD-O0Gs_tPXDe_WPz4G_4Enq2S2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489151484</pqid></control><display><type>article</type><title>Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTA‐UC Performance</title><source>Wiley</source><creator>Elgar, Christopher E. ; Otaif, Haleema Y. ; Zhang, Xue ; Zhao, Jianzhang ; Horton, Peter N. ; Coles, Simon J. ; Beames, Joseph M. ; Pope, Simon J. A.</creator><creatorcontrib>Elgar, Christopher E. ; Otaif, Haleema Y. ; Zhang, Xue ; Zhao, Jianzhang ; Horton, Peter N. ; Coles, Simon J. ; Beames, Joseph M. ; Pope, Simon J. A.</creatorcontrib><description>Six substituted ligands based upon 2‐(naphthalen‐1‐yl)quinoline‐4‐carboxylate and 2‐(naphthalen‐2‐yl)quinoline‐4‐carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII, yielding complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2′‐bipyridine). X‐ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis‐C,C and trans‐N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668–693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand‐centred versus MLCT character instilled by the facets of the ligand structure. Triplet–triplet annihilation upconversion (TTA‐UC) measurements demonstrate that the complexes based upon the 1‐naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6–6.7 %. Red, red shine: A series of substituted naphthylquinolines have been synthesised and investigated as cylcometallating ligands for IrIII. The resultant complexes were shown to be emissive in the deep‐red region and several were identified as viable photosensitisers for triplet–triplet annihilation upconversion.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202004146</identifier><identifier>PMID: 33242225</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Computer applications ; Coordination compounds ; Crystallography ; density functional theory ; Iridium ; iridium complexes ; Ligands ; phosphorescent species ; Photoluminescence ; Photons ; Quinoline ; spectroscopy ; Upconversion</subject><ispartof>Chemistry : a European journal, 2021-02, Vol.27 (10), p.3427-3439</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4506-732d321035da36f97904e28ffba4415f100387011ac75694fc3a89246111403c3</citedby><cites>FETCH-LOGICAL-c4506-732d321035da36f97904e28ffba4415f100387011ac75694fc3a89246111403c3</cites><orcidid>0000-0001-9110-9711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33242225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elgar, Christopher E.</creatorcontrib><creatorcontrib>Otaif, Haleema Y.</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Zhao, Jianzhang</creatorcontrib><creatorcontrib>Horton, Peter N.</creatorcontrib><creatorcontrib>Coles, Simon J.</creatorcontrib><creatorcontrib>Beames, Joseph M.</creatorcontrib><creatorcontrib>Pope, Simon J. A.</creatorcontrib><title>Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTA‐UC Performance</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Six substituted ligands based upon 2‐(naphthalen‐1‐yl)quinoline‐4‐carboxylate and 2‐(naphthalen‐2‐yl)quinoline‐4‐carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII, yielding complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2′‐bipyridine). X‐ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis‐C,C and trans‐N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668–693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand‐centred versus MLCT character instilled by the facets of the ligand structure. Triplet–triplet annihilation upconversion (TTA‐UC) measurements demonstrate that the complexes based upon the 1‐naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6–6.7 %. Red, red shine: A series of substituted naphthylquinolines have been synthesised and investigated as cylcometallating ligands for IrIII. The resultant complexes were shown to be emissive in the deep‐red region and several were identified as viable photosensitisers for triplet–triplet annihilation upconversion.</description><subject>Chemistry</subject><subject>Computer applications</subject><subject>Coordination compounds</subject><subject>Crystallography</subject><subject>density functional theory</subject><subject>Iridium</subject><subject>iridium complexes</subject><subject>Ligands</subject><subject>phosphorescent species</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Quinoline</subject><subject>spectroscopy</subject><subject>Upconversion</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0c1qGzEUBWBRWho37bbLIOgmXYyr_xl1Z4yTDLi0EHs9KBopUZiRHMlK8a6PkGfMk0TGSQrddCUQnw5X9wDwGaMpRoh80zdmnBJEEGKYiTdggjnBFa0FfwsmSLK6EpzKI_AhpVuEkBSUvgdHlBJGCOETMLbR9S6Pp23bfoWXxie3dcnEBJXv4cKbeL2D640O_r5cuuC_w9WNga23QzZeGxgsXLrrPb7cxqy3ORqYN8HD1Wr2-OdhPYe_TLQhjqroj-CdVUMyn57PY7A-W6zmF9Xy53k7ny0rzTgSVU1JTwlGlPeKCitriZghjbVXijHMbfk5bWqEsdI1F5JZTVUjCRMYY4aopsfg9JC7ieEum7TtRpe0GQblTcipK5QJxBtZF_rlH3obcvRluqIaiTlmDStqelA6hpSisd0mulHFXYdRty-i2xfRvRZRHpw8x-ar0fSv_GXzBcgD-O0Gs_tPXDe_WPz4G_4Enq2S2w</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Elgar, Christopher E.</creator><creator>Otaif, Haleema Y.</creator><creator>Zhang, Xue</creator><creator>Zhao, Jianzhang</creator><creator>Horton, Peter N.</creator><creator>Coles, Simon J.</creator><creator>Beames, Joseph M.</creator><creator>Pope, Simon J. A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9110-9711</orcidid></search><sort><creationdate>20210215</creationdate><title>Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTA‐UC Performance</title><author>Elgar, Christopher E. ; Otaif, Haleema Y. ; Zhang, Xue ; Zhao, Jianzhang ; Horton, Peter N. ; Coles, Simon J. ; Beames, Joseph M. ; Pope, Simon J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4506-732d321035da36f97904e28ffba4415f100387011ac75694fc3a89246111403c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Computer applications</topic><topic>Coordination compounds</topic><topic>Crystallography</topic><topic>density functional theory</topic><topic>Iridium</topic><topic>iridium complexes</topic><topic>Ligands</topic><topic>phosphorescent species</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Quinoline</topic><topic>spectroscopy</topic><topic>Upconversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elgar, Christopher E.</creatorcontrib><creatorcontrib>Otaif, Haleema Y.</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Zhao, Jianzhang</creatorcontrib><creatorcontrib>Horton, Peter N.</creatorcontrib><creatorcontrib>Coles, Simon J.</creatorcontrib><creatorcontrib>Beames, Joseph M.</creatorcontrib><creatorcontrib>Pope, Simon J. A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elgar, Christopher E.</au><au>Otaif, Haleema Y.</au><au>Zhang, Xue</au><au>Zhao, Jianzhang</au><au>Horton, Peter N.</au><au>Coles, Simon J.</au><au>Beames, Joseph M.</au><au>Pope, Simon J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTA‐UC Performance</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>27</volume><issue>10</issue><spage>3427</spage><epage>3439</epage><pages>3427-3439</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Six substituted ligands based upon 2‐(naphthalen‐1‐yl)quinoline‐4‐carboxylate and 2‐(naphthalen‐2‐yl)quinoline‐4‐carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII, yielding complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2′‐bipyridine). X‐ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis‐C,C and trans‐N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668–693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand‐centred versus MLCT character instilled by the facets of the ligand structure. Triplet–triplet annihilation upconversion (TTA‐UC) measurements demonstrate that the complexes based upon the 1‐naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6–6.7 %. Red, red shine: A series of substituted naphthylquinolines have been synthesised and investigated as cylcometallating ligands for IrIII. The resultant complexes were shown to be emissive in the deep‐red region and several were identified as viable photosensitisers for triplet–triplet annihilation upconversion.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33242225</pmid><doi>10.1002/chem.202004146</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9110-9711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2021-02, Vol.27 (10), p.3427-3439
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2464605897
source Wiley
subjects Chemistry
Computer applications
Coordination compounds
Crystallography
density functional theory
Iridium
iridium complexes
Ligands
phosphorescent species
Photoluminescence
Photons
Quinoline
spectroscopy
Upconversion
title Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTA‐UC Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iridium(III)%20Sensitisers%20and%20Energy%20Upconversion:%20The%20Influence%20of%20Ligand%20Structure%20upon%20TTA%E2%80%90UC%20Performance&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Elgar,%20Christopher%20E.&rft.date=2021-02-15&rft.volume=27&rft.issue=10&rft.spage=3427&rft.epage=3439&rft.pages=3427-3439&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202004146&rft_dat=%3Cproquest_cross%3E2464605897%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4506-732d321035da36f97904e28ffba4415f100387011ac75694fc3a89246111403c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489151484&rft_id=info:pmid/33242225&rfr_iscdi=true