Loading…
Low Power Bio-Impedance Sensor Interfaces: Review and Electronics Design Methodology
Assessing blood flow, respiration patterns, and body composition with wearable and noninvasive bio-impedance (BioZ) sensors has distinctive advantages over the conventional clinical practice. The merits of BioZ sensors derive from having long-term monitoring capability and improved user friendliness...
Saved in:
Published in: | IEEE reviews in biomedical engineering 2022, Vol.15, p.23-35 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Assessing blood flow, respiration patterns, and body composition with wearable and noninvasive bio-impedance (BioZ) sensors has distinctive advantages over the conventional clinical practice. The merits of BioZ sensors derive from having long-term monitoring capability and improved user friendliness. These open up the way to build medical grade wearable devices for chronic conditions. Low power, high precision BioZ sensor interface IC is the heart of such devices, it also determines the signal integrity of the overall system. Nevertheless, electrical design challenges from both circuit and system perspective still need to be addressed. This paper reviews the pioneering BioZ interface ICs and systems, and proposes major electrical specifications for wearable BioZ sensors. System design methodologies and circuit optimization techniques are summarized as guidelines to develop the next generation BioZ interface electronics. |
---|---|
ISSN: | 1937-3333 1941-1189 |
DOI: | 10.1109/RBME.2020.3041053 |