Loading…

Estimating Population Abundance of Burying Beetles Using Photo-Identification and Mark-Recapture Methods

Successful conservation and management of protected wildlife populations require reliable population abundance data. Traditional capture-mark-recapture methods can be costly, time-consuming, and invasive. Photographic mark-recapture (PMR) is a cost-effective, minimally invasive way to study populati...

Full description

Saved in:
Bibliographic Details
Published in:Environmental entomology 2021-02, Vol.50 (1), p.238-246
Main Authors: Quinby, Brandon M., Creighton, J. Curtis, Flaherty, Elizabeth A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Successful conservation and management of protected wildlife populations require reliable population abundance data. Traditional capture-mark-recapture methods can be costly, time-consuming, and invasive. Photographic mark-recapture (PMR) is a cost-effective, minimally invasive way to study population dynamics in species with distinct markings or color patterns. We tested the feasibility and the application of PMR using the software Hotspotter to identify Nicrophorus spp. from digital images of naturally occurring spot patterns on their elytra. We conducted a laboratory study evaluating the identification success of Hotspotter on Nicrophorus americanus (Olivier, 1790) and Nicrophorus orbicollis (Say, 1825) before implementation of a mark-recapture study in situ. We compared the performance of Hotspotter using both ‘high-quality' and ‘low-quality’ photographs. For high-quality photographs, Hotspotter had a false rejection rate of 2.7–3.0% for laboratory-reared individuals and 3.9% for wild-caught individuals. For low-quality photographs, the false rejection rate was much higher, 48.8–53.3% for laboratory-reared individuals and 28.3% for wild-caught individuals. We subsequently analyzed encounter histories of wild-caught individuals with closed population models in Program MARK to estimate population abundance. In our study, we demonstrated the utility of using PMR in estimating population abundance for Nicrophorus spp. based on elytral spot patterns.
ISSN:0046-225X
1938-2936
DOI:10.1093/ee/nvaa139