Loading…
Applications of nanotechnology on vegetable crops
Agriculture is the backbone of most developing countries, and most of their people depend on it for their livelihood. The world population is increased by approximately 83 million people each year, so there is a need to increase agricultural productivity. At present, productivity growth can be achie...
Saved in:
Published in: | Chemosphere (Oxford) 2021-03, Vol.266, p.129026-129026, Article 129026 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Agriculture is the backbone of most developing countries, and most of their people depend on it for their livelihood. The world population is increased by approximately 83 million people each year, so there is a need to increase agricultural productivity. At present, productivity growth can be achieved either by expanding the area cultivated or increasing crop yields through improving the efficiency of fertilizers used. Therefore, there has been a trend to use modern technologies, such as nanotechnology (NT), to increase the productivity of plants. Where, it is involved in the food production process, from planting to packaging. NT improves plants’ ability to absorb nutrients, and the agronomic properties of soil, which improves plant growth and productivity. Economically, NT increased the efficiency of nano-fertilizers, and so contributed to increasing productivity and the production of crops. However, the study of the effect of nanotechnology on the environment of soils and plants did not receive the required study. In this review, a comprehensive survey is exhibited on NT as an effective method in dealing with the problem of fertilizer loss during irrigation. This review discusses the technologies and applications of the latest research findings in this field. Furthermore, this review deals with the forms and types of nanoparticles and the methods of their transmission in plants, as well as their effect on plants (physiological and DNA) as well as on those who eat those plants.
•Application of nanotechnology in agriculture.•Nanofertilizer and agriculture process.•The mechanism and the role of nanofertilizer in plant. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2020.129026 |