Loading…
Radiation deterioration of several aromatic polymers under oxidative conditions
Radiation-induced oxidative irradiation effects (with γ-rays under oxygen pressure) or poly(aryl sulphones) (U-PS and PES), poly(aryl ester) (U-Polymer), poly(aryl amide) (A-Film) and poly(aryl ether ether ketone) (PEEK) have been studied based on changes in tensile properties. The deterioration dos...
Saved in:
Published in: | Polymer (Guilford) 1987-10, Vol.28 (11), p.1915-1921 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiation-induced oxidative irradiation effects (with γ-rays under oxygen pressure) or poly(aryl sulphones) (U-PS and PES), poly(aryl ester) (U-Polymer), poly(aryl amide) (A-Film) and poly(aryl ether ether ketone) (PEEK) have been studied based on changes in tensile properties. The deterioration dose estimated from the decrease in the elongation at break was as low as one-fifth to one-tenth of that in high-dose-rate electron-beam irradiation, but the order of radiation resistance of the polymers did not differ from that in electron-beam irradiation, i.e. PEEK > A-Film > U-Polymer > U-PS > PES. The radiation stability of aromatic units under oxidative conditions was estimated from a comparison of the radiation resistance of the polymers themselves and their chemical structures. The following order was obtained: diphenyl ether, diphenyl ketone > aromatic amide ⪢ bisphenol A > diphenyl sulphone. The deterioration mechanism of PEEK under oxidative irradiation was studied by measuring dynamic viscoelastic properties. It was concluded that deterioration in mechanical properties under oxidative irradiation was brought about by chain scission only. |
---|---|
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/0032-3861(87)90300-4 |