Loading…
Quasiparticle Mass Enhancement as a Measure of Entanglement in the Kondo Problem
We analyze the quantum entanglement between opposite spin projection electrons in the ground state of the Anderson impurity model. In this model, a single level impurity with intralevel repulsion U is tunnel coupled to a free electron gas. The Anderson model presents a strongly correlated many body...
Saved in:
Published in: | Physical review letters 2020-11, Vol.125 (21), p.217601-217601, Article 217601 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyze the quantum entanglement between opposite spin projection electrons in the ground state of the Anderson impurity model. In this model, a single level impurity with intralevel repulsion U is tunnel coupled to a free electron gas. The Anderson model presents a strongly correlated many body ground state with mass enhanced quasiparticle excitations. We find, using both analytical and numerical tools, that the quantum entanglement between opposite spin projection electrons is a monotonic universal function of the quasiparticle mass enhancement Z in the Kondo regime. This indicates that the interaction induced mass enhancement, which is generally used to quantify correlations in quantum many body systems, could be used as a measure of entanglement in the Kondo problem. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.125.217601 |