Loading…
Mucolytic self-emulsifying drug delivery systems (SEDDS) containing a hydrophobic ion-pair of proteinase
The aim of this study was to form hydrophobic ion-pairs of proteinase with cationic surfactants and to incorporate them into self-emulsifying drug delivery systems (SEDDS) to improve their mucus permeating properties. Proteinase was ion-paired with benzalkonium chloride (BAK), hexadecylpyridinium ch...
Saved in:
Published in: | European journal of pharmaceutical sciences 2021-07, Vol.162, p.105658-105658, Article 105658 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study was to form hydrophobic ion-pairs of proteinase with cationic surfactants and to incorporate them into self-emulsifying drug delivery systems (SEDDS) to improve their mucus permeating properties.
Proteinase was ion-paired with benzalkonium chloride (BAK), hexadecylpyridinium chloride (HDP), alkyltrimethylammonium bromide (ATA) and hexadecyltrimethylammonium bromide (HDT) at pH 8.5-9.0, and subsequently incorporated into SEDDS consisting of Cremophor EL, propylene glycol, and Capmul 808-G (40/20/40). Mucus permeation of SEDDS containing proteinase complexes was evaluated via rotating tube technique and cell-free Transwell® insert system. Additionally, enzymatic activity of proteinase complexes as well as their potential cytotoxicity was evaluated.
Among all tested hydrophobic ion-pairs, proteinase/BAK showed highest potential. Mucus diffusion of SEDDS containing proteinase/BAK complex yielded in 2.3-fold and 2.5-fold higher mucus permeability with respect to blank SEDDS at Transwell® insert system and rotating tube technique, respectively. Furthermore, proteinase/BAK complex maintained the highest enzymatic activity of 50.5 ± 5.6% compared to free proteinase. At a SEDDS concentration as low as 0.006% cell viability was just 80%. The addition of proteinase complexes to SEDDS increased cytotoxicity on Caco-2 cells in a concentration-dependent manner.
SEDDS loaded with proteinase/BAK complexes are promising nanocarriers because of enhanced mucus permeating properties.
[Display omitted] |
---|---|
ISSN: | 0928-0987 1879-0720 |
DOI: | 10.1016/j.ejps.2020.105658 |