Loading…
Simulation of the Wisconsin-Argonne Plasma Wakefield Experiment
The plasma wakefield accelerator (PWFA) is an advanced accelerator concept that uses the large electric fields that can be generated in a plasma to accelerate charged particles. We present the results of a self-consistent two-dimensional simulation of the first experiment designed to test this conce...
Saved in:
Published in: | IEEE transactions on plasma science 1987-04, Vol.15 (2), p.199-202, Article 199 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The plasma wakefield accelerator (PWFA) is an advanced accelerator concept that uses the large electric fields that can be generated in a plasma to accelerate charged particles. We present the results of a self-consistent two-dimensional simulation of the first experiment designed to test this concept. Linear theory predicts for this experiment an accelerating gradient of approximately 95 MV/m. However, the simulations indicate that a much larger accelerating field is achieved in the plasma. This enhancement is due to strong beam pinching, which is not treated self-consistently by a linear theory. Wave steepening due to a nonlinear modulation of the background plasma is also observed. This steepening results in a phase shift that degrades the acceleration. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.1987.4316685 |