Loading…

Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation

Poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part A 2021-08, Vol.109 (8), p.1468-1478
Main Authors: Chen, Jiao, Li, Xuanze, Liu, Qin, Wu, Ying, Shu, Liping, He, Zhixu, Ye, Chuan, Ma, Minxian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113
cites cdi_FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113
container_end_page 1478
container_issue 8
container_start_page 1468
container_title Journal of biomedical materials research. Part A
container_volume 109
creator Chen, Jiao
Li, Xuanze
Liu, Qin
Wu, Ying
Shu, Liping
He, Zhixu
Ye, Chuan
Ma, Minxian
description Poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excellent performance in tissue engineering (TE). PLGA solution (15% w/v) was used as the bottom solution, and a mixed solution of 12% w/v PVP + PEO was applied as the surface layer solution. The mass ratios of PVP vs. PEO in each 10 ml surface layer mixed solution were 1.08 g: 0.12 g; 0.96 g: 0.24 g; and 0.84 g: 0.36 g. Compared to the conventional electrospinning method used to fabricate the pure PVP + PEO (0.96 g: 0.24 g, Group A) scaffold and pure PLGA (Group E) scaffold, the multilayer electrospinning technique of alternating sprays of the bottom layer solution and the surface layer solution was adopted to fabricate multilayer nanofiber scaffolds, including PLGA/(PVP + PEO) (1.08 g: 0.12 g, Group B), PLGA/(PVP + PEO) (0.96 g: 0.24 g, Group C), and PLGA/(PVP + PEO) (0.84 g: 0.36 g, Group D). The morphology and characteristics of the five scaffolds were analyzed, and the biocompatibilities of the cell‐scaffold composites were assessed through methods including Cell Counting Kit‐8 (CCK8) analysis, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining, and scanning electron microscopy. Therefore, with a PVP‐to‐PEO mass ratio of 0.96 g: 0.24 g, an optimal multilayer nanofiber scaffold was fabricated by the multilayer electrospinning technique. The excellent biocompatibility and mechanical properties of the scaffold were confirmed by in vitro experiments, which demonstrated the scaffold's promising application potential in the field of TE.
doi_str_mv 10.1002/jbm.a.37137
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2468330880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541699180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113</originalsourceid><addsrcrecordid>eNp9kU1u1TAUhSMEakvbEXNkiUmrKq_-SZx4WCrKj4o6gbHl2DfgJycOdlLwjCWwBNbGSvB7KQwYMLnnWv58dORTFM8I3hCM6eW2GzZqwxrCmkfFEalrWlaC1493eyVKRgU_LJ7GuM0wxzU9KA4Zo62ggh0VP29UF6xWs_Uj8j0aFjdbpxIEMAgc6Dn4OC0jmrxLZ07p2epf339on8cnl7R3ViOlrTm_3BH3dkwOTSmEfGH8COhifQnz5-Qgn_03a-AcRa363jsTkRoN6qzXfphyis46OycE98ot-1AnxZNeuQinD3pcfLx59eH6TXl79_rt9dVtqRmhTakaqAzVjFNMe8E5r7Chlag5tJwZYygXmFFNhKhxFmLaVmsjOlM1lLeEsOPibPWdgv-yQJzlYKMG59QIfomSVrxlDLctzuiLf9CtX8KY00laV4QLQfbUxUrp_IMxQC-nYAcVkiRY7oqTuTip5L64TD9_8Fy6Acxf9k9TGaAr8NU6SP_zku9evr9aXX8DR0uoSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541699180</pqid></control><display><type>article</type><title>Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chen, Jiao ; Li, Xuanze ; Liu, Qin ; Wu, Ying ; Shu, Liping ; He, Zhixu ; Ye, Chuan ; Ma, Minxian</creator><creatorcontrib>Chen, Jiao ; Li, Xuanze ; Liu, Qin ; Wu, Ying ; Shu, Liping ; He, Zhixu ; Ye, Chuan ; Ma, Minxian</creatorcontrib><description>Poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excellent performance in tissue engineering (TE). PLGA solution (15% w/v) was used as the bottom solution, and a mixed solution of 12% w/v PVP + PEO was applied as the surface layer solution. The mass ratios of PVP vs. PEO in each 10 ml surface layer mixed solution were 1.08 g: 0.12 g; 0.96 g: 0.24 g; and 0.84 g: 0.36 g. Compared to the conventional electrospinning method used to fabricate the pure PVP + PEO (0.96 g: 0.24 g, Group A) scaffold and pure PLGA (Group E) scaffold, the multilayer electrospinning technique of alternating sprays of the bottom layer solution and the surface layer solution was adopted to fabricate multilayer nanofiber scaffolds, including PLGA/(PVP + PEO) (1.08 g: 0.12 g, Group B), PLGA/(PVP + PEO) (0.96 g: 0.24 g, Group C), and PLGA/(PVP + PEO) (0.84 g: 0.36 g, Group D). The morphology and characteristics of the five scaffolds were analyzed, and the biocompatibilities of the cell‐scaffold composites were assessed through methods including Cell Counting Kit‐8 (CCK8) analysis, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining, and scanning electron microscopy. Therefore, with a PVP‐to‐PEO mass ratio of 0.96 g: 0.24 g, an optimal multilayer nanofiber scaffold was fabricated by the multilayer electrospinning technique. The excellent biocompatibility and mechanical properties of the scaffold were confirmed by in vitro experiments, which demonstrated the scaffold's promising application potential in the field of TE.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37137</identifier><identifier>PMID: 33289293</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Biocompatibility ; Biocompatible Materials - chemistry ; Cell Line ; Cell Proliferation ; Electrospinning ; Ethylene ; Ethylene oxide ; Ethylene Oxide - analogs &amp; derivatives ; Fabrication ; Glycolic acid ; Humans ; Mass ratios ; Materials Testing ; Mechanical properties ; Morphology ; Multilayers ; Nanofibers ; Nanofibers - chemistry ; Physical characteristics ; Physicochemical properties ; Polyethylene oxide ; Polylactic Acid-Polyglycolic Acid Copolymer - chemistry ; Polylactide-co-glycolide ; Polymers ; Polyvinyl pyrrolidone ; Povidone - chemistry ; scaffold ; Scaffolds ; Scanning electron microscopy ; Sprays ; stem cell ; Surface layers ; Tissue engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2021-08, Vol.109 (8), p.1468-1478</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113</citedby><cites>FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113</cites><orcidid>0000-0002-2902-4837 ; 0000-0001-5670-6289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33289293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Li, Xuanze</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><creatorcontrib>Shu, Liping</creatorcontrib><creatorcontrib>He, Zhixu</creatorcontrib><creatorcontrib>Ye, Chuan</creatorcontrib><creatorcontrib>Ma, Minxian</creatorcontrib><title>Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excellent performance in tissue engineering (TE). PLGA solution (15% w/v) was used as the bottom solution, and a mixed solution of 12% w/v PVP + PEO was applied as the surface layer solution. The mass ratios of PVP vs. PEO in each 10 ml surface layer mixed solution were 1.08 g: 0.12 g; 0.96 g: 0.24 g; and 0.84 g: 0.36 g. Compared to the conventional electrospinning method used to fabricate the pure PVP + PEO (0.96 g: 0.24 g, Group A) scaffold and pure PLGA (Group E) scaffold, the multilayer electrospinning technique of alternating sprays of the bottom layer solution and the surface layer solution was adopted to fabricate multilayer nanofiber scaffolds, including PLGA/(PVP + PEO) (1.08 g: 0.12 g, Group B), PLGA/(PVP + PEO) (0.96 g: 0.24 g, Group C), and PLGA/(PVP + PEO) (0.84 g: 0.36 g, Group D). The morphology and characteristics of the five scaffolds were analyzed, and the biocompatibilities of the cell‐scaffold composites were assessed through methods including Cell Counting Kit‐8 (CCK8) analysis, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining, and scanning electron microscopy. Therefore, with a PVP‐to‐PEO mass ratio of 0.96 g: 0.24 g, an optimal multilayer nanofiber scaffold was fabricated by the multilayer electrospinning technique. The excellent biocompatibility and mechanical properties of the scaffold were confirmed by in vitro experiments, which demonstrated the scaffold's promising application potential in the field of TE.</description><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Electrospinning</subject><subject>Ethylene</subject><subject>Ethylene oxide</subject><subject>Ethylene Oxide - analogs &amp; derivatives</subject><subject>Fabrication</subject><subject>Glycolic acid</subject><subject>Humans</subject><subject>Mass ratios</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Multilayers</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Physical characteristics</subject><subject>Physicochemical properties</subject><subject>Polyethylene oxide</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Polyvinyl pyrrolidone</subject><subject>Povidone - chemistry</subject><subject>scaffold</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Sprays</subject><subject>stem cell</subject><subject>Surface layers</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1u1TAUhSMEakvbEXNkiUmrKq_-SZx4WCrKj4o6gbHl2DfgJycOdlLwjCWwBNbGSvB7KQwYMLnnWv58dORTFM8I3hCM6eW2GzZqwxrCmkfFEalrWlaC1493eyVKRgU_LJ7GuM0wxzU9KA4Zo62ggh0VP29UF6xWs_Uj8j0aFjdbpxIEMAgc6Dn4OC0jmrxLZ07p2epf339on8cnl7R3ViOlrTm_3BH3dkwOTSmEfGH8COhifQnz5-Qgn_03a-AcRa363jsTkRoN6qzXfphyis46OycE98ot-1AnxZNeuQinD3pcfLx59eH6TXl79_rt9dVtqRmhTakaqAzVjFNMe8E5r7Chlag5tJwZYygXmFFNhKhxFmLaVmsjOlM1lLeEsOPibPWdgv-yQJzlYKMG59QIfomSVrxlDLctzuiLf9CtX8KY00laV4QLQfbUxUrp_IMxQC-nYAcVkiRY7oqTuTip5L64TD9_8Fy6Acxf9k9TGaAr8NU6SP_zku9evr9aXX8DR0uoSg</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Chen, Jiao</creator><creator>Li, Xuanze</creator><creator>Liu, Qin</creator><creator>Wu, Ying</creator><creator>Shu, Liping</creator><creator>He, Zhixu</creator><creator>Ye, Chuan</creator><creator>Ma, Minxian</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2902-4837</orcidid><orcidid>https://orcid.org/0000-0001-5670-6289</orcidid></search><sort><creationdate>202108</creationdate><title>Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation</title><author>Chen, Jiao ; Li, Xuanze ; Liu, Qin ; Wu, Ying ; Shu, Liping ; He, Zhixu ; Ye, Chuan ; Ma, Minxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Electrospinning</topic><topic>Ethylene</topic><topic>Ethylene oxide</topic><topic>Ethylene Oxide - analogs &amp; derivatives</topic><topic>Fabrication</topic><topic>Glycolic acid</topic><topic>Humans</topic><topic>Mass ratios</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Multilayers</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Physical characteristics</topic><topic>Physicochemical properties</topic><topic>Polyethylene oxide</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Polyvinyl pyrrolidone</topic><topic>Povidone - chemistry</topic><topic>scaffold</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Sprays</topic><topic>stem cell</topic><topic>Surface layers</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Li, Xuanze</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><creatorcontrib>Shu, Liping</creatorcontrib><creatorcontrib>He, Zhixu</creatorcontrib><creatorcontrib>Ye, Chuan</creatorcontrib><creatorcontrib>Ma, Minxian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiao</au><au>Li, Xuanze</au><au>Liu, Qin</au><au>Wu, Ying</au><au>Shu, Liping</au><au>He, Zhixu</au><au>Ye, Chuan</au><au>Ma, Minxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2021-08</date><risdate>2021</risdate><volume>109</volume><issue>8</issue><spage>1468</spage><epage>1478</epage><pages>1468-1478</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excellent performance in tissue engineering (TE). PLGA solution (15% w/v) was used as the bottom solution, and a mixed solution of 12% w/v PVP + PEO was applied as the surface layer solution. The mass ratios of PVP vs. PEO in each 10 ml surface layer mixed solution were 1.08 g: 0.12 g; 0.96 g: 0.24 g; and 0.84 g: 0.36 g. Compared to the conventional electrospinning method used to fabricate the pure PVP + PEO (0.96 g: 0.24 g, Group A) scaffold and pure PLGA (Group E) scaffold, the multilayer electrospinning technique of alternating sprays of the bottom layer solution and the surface layer solution was adopted to fabricate multilayer nanofiber scaffolds, including PLGA/(PVP + PEO) (1.08 g: 0.12 g, Group B), PLGA/(PVP + PEO) (0.96 g: 0.24 g, Group C), and PLGA/(PVP + PEO) (0.84 g: 0.36 g, Group D). The morphology and characteristics of the five scaffolds were analyzed, and the biocompatibilities of the cell‐scaffold composites were assessed through methods including Cell Counting Kit‐8 (CCK8) analysis, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining, and scanning electron microscopy. Therefore, with a PVP‐to‐PEO mass ratio of 0.96 g: 0.24 g, an optimal multilayer nanofiber scaffold was fabricated by the multilayer electrospinning technique. The excellent biocompatibility and mechanical properties of the scaffold were confirmed by in vitro experiments, which demonstrated the scaffold's promising application potential in the field of TE.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33289293</pmid><doi>10.1002/jbm.a.37137</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2902-4837</orcidid><orcidid>https://orcid.org/0000-0001-5670-6289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2021-08, Vol.109 (8), p.1468-1478
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_2468330880
source Wiley-Blackwell Read & Publish Collection
subjects Biocompatibility
Biocompatible Materials - chemistry
Cell Line
Cell Proliferation
Electrospinning
Ethylene
Ethylene oxide
Ethylene Oxide - analogs & derivatives
Fabrication
Glycolic acid
Humans
Mass ratios
Materials Testing
Mechanical properties
Morphology
Multilayers
Nanofibers
Nanofibers - chemistry
Physical characteristics
Physicochemical properties
Polyethylene oxide
Polylactic Acid-Polyglycolic Acid Copolymer - chemistry
Polylactide-co-glycolide
Polymers
Polyvinyl pyrrolidone
Povidone - chemistry
scaffold
Scaffolds
Scanning electron microscopy
Sprays
stem cell
Surface layers
Tissue engineering
Tissue Scaffolds - chemistry
title Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20multilayered%20electrospun%20poly(lactic%E2%80%90co%E2%80%90glycolic%20acid)/polyvinyl%20pyrrolidone%20+%20poly(ethylene%20oxide)%20scaffolds%20and%20biocompatibility%20evaluation&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Chen,%20Jiao&rft.date=2021-08&rft.volume=109&rft.issue=8&rft.spage=1468&rft.epage=1478&rft.pages=1468-1478&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37137&rft_dat=%3Cproquest_cross%3E2541699180%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541699180&rft_id=info:pmid/33289293&rfr_iscdi=true