Loading…
Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation
Poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excel...
Saved in:
Published in: | Journal of biomedical materials research. Part A 2021-08, Vol.109 (8), p.1468-1478 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113 |
---|---|
cites | cdi_FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113 |
container_end_page | 1478 |
container_issue | 8 |
container_start_page | 1468 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 109 |
creator | Chen, Jiao Li, Xuanze Liu, Qin Wu, Ying Shu, Liping He, Zhixu Ye, Chuan Ma, Minxian |
description | Poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excellent performance in tissue engineering (TE). PLGA solution (15% w/v) was used as the bottom solution, and a mixed solution of 12% w/v PVP + PEO was applied as the surface layer solution. The mass ratios of PVP vs. PEO in each 10 ml surface layer mixed solution were 1.08 g: 0.12 g; 0.96 g: 0.24 g; and 0.84 g: 0.36 g. Compared to the conventional electrospinning method used to fabricate the pure PVP + PEO (0.96 g: 0.24 g, Group A) scaffold and pure PLGA (Group E) scaffold, the multilayer electrospinning technique of alternating sprays of the bottom layer solution and the surface layer solution was adopted to fabricate multilayer nanofiber scaffolds, including PLGA/(PVP + PEO) (1.08 g: 0.12 g, Group B), PLGA/(PVP + PEO) (0.96 g: 0.24 g, Group C), and PLGA/(PVP + PEO) (0.84 g: 0.36 g, Group D). The morphology and characteristics of the five scaffolds were analyzed, and the biocompatibilities of the cell‐scaffold composites were assessed through methods including Cell Counting Kit‐8 (CCK8) analysis, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining, and scanning electron microscopy. Therefore, with a PVP‐to‐PEO mass ratio of 0.96 g: 0.24 g, an optimal multilayer nanofiber scaffold was fabricated by the multilayer electrospinning technique. The excellent biocompatibility and mechanical properties of the scaffold were confirmed by in vitro experiments, which demonstrated the scaffold's promising application potential in the field of TE. |
doi_str_mv | 10.1002/jbm.a.37137 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2468330880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2541699180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113</originalsourceid><addsrcrecordid>eNp9kU1u1TAUhSMEakvbEXNkiUmrKq_-SZx4WCrKj4o6gbHl2DfgJycOdlLwjCWwBNbGSvB7KQwYMLnnWv58dORTFM8I3hCM6eW2GzZqwxrCmkfFEalrWlaC1493eyVKRgU_LJ7GuM0wxzU9KA4Zo62ggh0VP29UF6xWs_Uj8j0aFjdbpxIEMAgc6Dn4OC0jmrxLZ07p2epf339on8cnl7R3ViOlrTm_3BH3dkwOTSmEfGH8COhifQnz5-Qgn_03a-AcRa363jsTkRoN6qzXfphyis46OycE98ot-1AnxZNeuQinD3pcfLx59eH6TXl79_rt9dVtqRmhTakaqAzVjFNMe8E5r7Chlag5tJwZYygXmFFNhKhxFmLaVmsjOlM1lLeEsOPibPWdgv-yQJzlYKMG59QIfomSVrxlDLctzuiLf9CtX8KY00laV4QLQfbUxUrp_IMxQC-nYAcVkiRY7oqTuTip5L64TD9_8Fy6Acxf9k9TGaAr8NU6SP_zku9evr9aXX8DR0uoSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541699180</pqid></control><display><type>article</type><title>Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chen, Jiao ; Li, Xuanze ; Liu, Qin ; Wu, Ying ; Shu, Liping ; He, Zhixu ; Ye, Chuan ; Ma, Minxian</creator><creatorcontrib>Chen, Jiao ; Li, Xuanze ; Liu, Qin ; Wu, Ying ; Shu, Liping ; He, Zhixu ; Ye, Chuan ; Ma, Minxian</creatorcontrib><description>Poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excellent performance in tissue engineering (TE). PLGA solution (15% w/v) was used as the bottom solution, and a mixed solution of 12% w/v PVP + PEO was applied as the surface layer solution. The mass ratios of PVP vs. PEO in each 10 ml surface layer mixed solution were 1.08 g: 0.12 g; 0.96 g: 0.24 g; and 0.84 g: 0.36 g. Compared to the conventional electrospinning method used to fabricate the pure PVP + PEO (0.96 g: 0.24 g, Group A) scaffold and pure PLGA (Group E) scaffold, the multilayer electrospinning technique of alternating sprays of the bottom layer solution and the surface layer solution was adopted to fabricate multilayer nanofiber scaffolds, including PLGA/(PVP + PEO) (1.08 g: 0.12 g, Group B), PLGA/(PVP + PEO) (0.96 g: 0.24 g, Group C), and PLGA/(PVP + PEO) (0.84 g: 0.36 g, Group D). The morphology and characteristics of the five scaffolds were analyzed, and the biocompatibilities of the cell‐scaffold composites were assessed through methods including Cell Counting Kit‐8 (CCK8) analysis, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining, and scanning electron microscopy. Therefore, with a PVP‐to‐PEO mass ratio of 0.96 g: 0.24 g, an optimal multilayer nanofiber scaffold was fabricated by the multilayer electrospinning technique. The excellent biocompatibility and mechanical properties of the scaffold were confirmed by in vitro experiments, which demonstrated the scaffold's promising application potential in the field of TE.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37137</identifier><identifier>PMID: 33289293</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Biocompatibility ; Biocompatible Materials - chemistry ; Cell Line ; Cell Proliferation ; Electrospinning ; Ethylene ; Ethylene oxide ; Ethylene Oxide - analogs & derivatives ; Fabrication ; Glycolic acid ; Humans ; Mass ratios ; Materials Testing ; Mechanical properties ; Morphology ; Multilayers ; Nanofibers ; Nanofibers - chemistry ; Physical characteristics ; Physicochemical properties ; Polyethylene oxide ; Polylactic Acid-Polyglycolic Acid Copolymer - chemistry ; Polylactide-co-glycolide ; Polymers ; Polyvinyl pyrrolidone ; Povidone - chemistry ; scaffold ; Scaffolds ; Scanning electron microscopy ; Sprays ; stem cell ; Surface layers ; Tissue engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2021-08, Vol.109 (8), p.1468-1478</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113</citedby><cites>FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113</cites><orcidid>0000-0002-2902-4837 ; 0000-0001-5670-6289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33289293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Li, Xuanze</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><creatorcontrib>Shu, Liping</creatorcontrib><creatorcontrib>He, Zhixu</creatorcontrib><creatorcontrib>Ye, Chuan</creatorcontrib><creatorcontrib>Ma, Minxian</creatorcontrib><title>Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excellent performance in tissue engineering (TE). PLGA solution (15% w/v) was used as the bottom solution, and a mixed solution of 12% w/v PVP + PEO was applied as the surface layer solution. The mass ratios of PVP vs. PEO in each 10 ml surface layer mixed solution were 1.08 g: 0.12 g; 0.96 g: 0.24 g; and 0.84 g: 0.36 g. Compared to the conventional electrospinning method used to fabricate the pure PVP + PEO (0.96 g: 0.24 g, Group A) scaffold and pure PLGA (Group E) scaffold, the multilayer electrospinning technique of alternating sprays of the bottom layer solution and the surface layer solution was adopted to fabricate multilayer nanofiber scaffolds, including PLGA/(PVP + PEO) (1.08 g: 0.12 g, Group B), PLGA/(PVP + PEO) (0.96 g: 0.24 g, Group C), and PLGA/(PVP + PEO) (0.84 g: 0.36 g, Group D). The morphology and characteristics of the five scaffolds were analyzed, and the biocompatibilities of the cell‐scaffold composites were assessed through methods including Cell Counting Kit‐8 (CCK8) analysis, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining, and scanning electron microscopy. Therefore, with a PVP‐to‐PEO mass ratio of 0.96 g: 0.24 g, an optimal multilayer nanofiber scaffold was fabricated by the multilayer electrospinning technique. The excellent biocompatibility and mechanical properties of the scaffold were confirmed by in vitro experiments, which demonstrated the scaffold's promising application potential in the field of TE.</description><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Electrospinning</subject><subject>Ethylene</subject><subject>Ethylene oxide</subject><subject>Ethylene Oxide - analogs & derivatives</subject><subject>Fabrication</subject><subject>Glycolic acid</subject><subject>Humans</subject><subject>Mass ratios</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Multilayers</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Physical characteristics</subject><subject>Physicochemical properties</subject><subject>Polyethylene oxide</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Polyvinyl pyrrolidone</subject><subject>Povidone - chemistry</subject><subject>scaffold</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Sprays</subject><subject>stem cell</subject><subject>Surface layers</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1u1TAUhSMEakvbEXNkiUmrKq_-SZx4WCrKj4o6gbHl2DfgJycOdlLwjCWwBNbGSvB7KQwYMLnnWv58dORTFM8I3hCM6eW2GzZqwxrCmkfFEalrWlaC1493eyVKRgU_LJ7GuM0wxzU9KA4Zo62ggh0VP29UF6xWs_Uj8j0aFjdbpxIEMAgc6Dn4OC0jmrxLZ07p2epf339on8cnl7R3ViOlrTm_3BH3dkwOTSmEfGH8COhifQnz5-Qgn_03a-AcRa363jsTkRoN6qzXfphyis46OycE98ot-1AnxZNeuQinD3pcfLx59eH6TXl79_rt9dVtqRmhTakaqAzVjFNMe8E5r7Chlag5tJwZYygXmFFNhKhxFmLaVmsjOlM1lLeEsOPibPWdgv-yQJzlYKMG59QIfomSVrxlDLctzuiLf9CtX8KY00laV4QLQfbUxUrp_IMxQC-nYAcVkiRY7oqTuTip5L64TD9_8Fy6Acxf9k9TGaAr8NU6SP_zku9evr9aXX8DR0uoSg</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Chen, Jiao</creator><creator>Li, Xuanze</creator><creator>Liu, Qin</creator><creator>Wu, Ying</creator><creator>Shu, Liping</creator><creator>He, Zhixu</creator><creator>Ye, Chuan</creator><creator>Ma, Minxian</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2902-4837</orcidid><orcidid>https://orcid.org/0000-0001-5670-6289</orcidid></search><sort><creationdate>202108</creationdate><title>Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation</title><author>Chen, Jiao ; Li, Xuanze ; Liu, Qin ; Wu, Ying ; Shu, Liping ; He, Zhixu ; Ye, Chuan ; Ma, Minxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Electrospinning</topic><topic>Ethylene</topic><topic>Ethylene oxide</topic><topic>Ethylene Oxide - analogs & derivatives</topic><topic>Fabrication</topic><topic>Glycolic acid</topic><topic>Humans</topic><topic>Mass ratios</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Multilayers</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Physical characteristics</topic><topic>Physicochemical properties</topic><topic>Polyethylene oxide</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Polyvinyl pyrrolidone</topic><topic>Povidone - chemistry</topic><topic>scaffold</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Sprays</topic><topic>stem cell</topic><topic>Surface layers</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Li, Xuanze</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><creatorcontrib>Shu, Liping</creatorcontrib><creatorcontrib>He, Zhixu</creatorcontrib><creatorcontrib>Ye, Chuan</creatorcontrib><creatorcontrib>Ma, Minxian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiao</au><au>Li, Xuanze</au><au>Liu, Qin</au><au>Wu, Ying</au><au>Shu, Liping</au><au>He, Zhixu</au><au>Ye, Chuan</au><au>Ma, Minxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2021-08</date><risdate>2021</risdate><volume>109</volume><issue>8</issue><spage>1468</spage><epage>1478</epage><pages>1468-1478</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) [PLGA/(PVP + PEO)] scaffolds with different polymer concentrations were fabricated using multilayered electrospinning, and their physicochemical properties and biocompatibility were examined to screen for scaffolds with excellent performance in tissue engineering (TE). PLGA solution (15% w/v) was used as the bottom solution, and a mixed solution of 12% w/v PVP + PEO was applied as the surface layer solution. The mass ratios of PVP vs. PEO in each 10 ml surface layer mixed solution were 1.08 g: 0.12 g; 0.96 g: 0.24 g; and 0.84 g: 0.36 g. Compared to the conventional electrospinning method used to fabricate the pure PVP + PEO (0.96 g: 0.24 g, Group A) scaffold and pure PLGA (Group E) scaffold, the multilayer electrospinning technique of alternating sprays of the bottom layer solution and the surface layer solution was adopted to fabricate multilayer nanofiber scaffolds, including PLGA/(PVP + PEO) (1.08 g: 0.12 g, Group B), PLGA/(PVP + PEO) (0.96 g: 0.24 g, Group C), and PLGA/(PVP + PEO) (0.84 g: 0.36 g, Group D). The morphology and characteristics of the five scaffolds were analyzed, and the biocompatibilities of the cell‐scaffold composites were assessed through methods including Cell Counting Kit‐8 (CCK8) analysis, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining, and scanning electron microscopy. Therefore, with a PVP‐to‐PEO mass ratio of 0.96 g: 0.24 g, an optimal multilayer nanofiber scaffold was fabricated by the multilayer electrospinning technique. The excellent biocompatibility and mechanical properties of the scaffold were confirmed by in vitro experiments, which demonstrated the scaffold's promising application potential in the field of TE.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33289293</pmid><doi>10.1002/jbm.a.37137</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2902-4837</orcidid><orcidid>https://orcid.org/0000-0001-5670-6289</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2021-08, Vol.109 (8), p.1468-1478 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_2468330880 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Biocompatibility Biocompatible Materials - chemistry Cell Line Cell Proliferation Electrospinning Ethylene Ethylene oxide Ethylene Oxide - analogs & derivatives Fabrication Glycolic acid Humans Mass ratios Materials Testing Mechanical properties Morphology Multilayers Nanofibers Nanofibers - chemistry Physical characteristics Physicochemical properties Polyethylene oxide Polylactic Acid-Polyglycolic Acid Copolymer - chemistry Polylactide-co-glycolide Polymers Polyvinyl pyrrolidone Povidone - chemistry scaffold Scaffolds Scanning electron microscopy Sprays stem cell Surface layers Tissue engineering Tissue Scaffolds - chemistry |
title | Fabrication of multilayered electrospun poly(lactic‐co‐glycolic acid)/polyvinyl pyrrolidone + poly(ethylene oxide) scaffolds and biocompatibility evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20multilayered%20electrospun%20poly(lactic%E2%80%90co%E2%80%90glycolic%20acid)/polyvinyl%20pyrrolidone%20+%20poly(ethylene%20oxide)%20scaffolds%20and%20biocompatibility%20evaluation&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Chen,%20Jiao&rft.date=2021-08&rft.volume=109&rft.issue=8&rft.spage=1468&rft.epage=1478&rft.pages=1468-1478&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37137&rft_dat=%3Cproquest_cross%3E2541699180%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3127-a7e4d2c36202f966640d24956e863ddd269032c199502c11d88ccd9bd47268113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541699180&rft_id=info:pmid/33289293&rfr_iscdi=true |