Loading…

Modulation of Neuronal Cell Affinity on PEDOT–PSS Nonwoven Silk Scaffolds for Neural Tissue Engineering

Peripheral nerve injury is a common consequence of trauma with low regenerative potential. Electroconductive scaffolds can provide appropriate cell growth microenvironments and synergistic cell guidance cues for nerve tissue engineering. In the present study, electrically conductive scaffolds were p...

Full description

Saved in:
Bibliographic Details
Published in:ACS biomaterials science & engineering 2020-12, Vol.6 (12), p.6906-6916
Main Authors: Magaz, Adrián, Spencer, Ben F, Hardy, John G, Li, Xu, Gough, Julie E, Blaker, Jonny J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peripheral nerve injury is a common consequence of trauma with low regenerative potential. Electroconductive scaffolds can provide appropriate cell growth microenvironments and synergistic cell guidance cues for nerve tissue engineering. In the present study, electrically conductive scaffolds were prepared by conjugating poly (3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT–PSS) or dimethyl sulfoxide (DMSO)-treated PEDOT–PSS on electrospun silk scaffolds. Conductance could be tuned by the coating concentration and was further boosted by DMSO treatment. Analogue NG108-15 neuronal cells were cultured on the scaffolds to evaluate neuronal cell growth, proliferation, and differentiation. Cellular viability was maintained on all scaffold groups while showing comparatively better metabolic activity and proliferation than neat silk. DMSO-treated PEDOT–PSS functionalized scaffolds partially outperformed their PEDOT–PSS counterparts. Differentiation assessments suggested that these PEDOT–PSS assembled silk scaffolds could support neurite sprouting, indicating that they show promise to be used as a future platform to restore electrochemical coupling at the site of injury and preserve normal nerve function.
ISSN:2373-9878
2373-9878
DOI:10.1021/acsbiomaterials.0c01239