Loading…
Universal two-level quantum Otto machine under a squeezed reservoir
We study an Otto heat machine whose working substance is a single two-level system interacting with a cold thermal reservoir and with a squeezed hot thermal reservoir. By adjusting the squeezing or the adiabaticity parameter (the probability of transition) we show that our two-level system can funct...
Saved in:
Published in: | Physical review. E 2020-11, Vol.102 (5-1), p.052131-052131, Article 052131 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study an Otto heat machine whose working substance is a single two-level system interacting with a cold thermal reservoir and with a squeezed hot thermal reservoir. By adjusting the squeezing or the adiabaticity parameter (the probability of transition) we show that our two-level system can function as a universal heat machine, either producing net work by consuming heat or consuming work that is used to cool or heat environments. Using our model we study the performance of these machine in the finite-time regime of the isentropic strokes, which is a regime that contributes to make them useful from a practical point of view. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.102.052131 |