Loading…
Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison
An important bound on the accuracy of modern techniques for monitoring polar motion is established by intercomparison of measurement series from two different observing techniques, very long baseline interferometry and satellite laser ranging. The root-mean-square differences between the estimates o...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1985-09, Vol.229 (4719), p.1259-1261 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273 |
---|---|
cites | cdi_FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273 |
container_end_page | 1261 |
container_issue | 4719 |
container_start_page | 1259 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 229 |
creator | Robertson, D. S. Carter, W. E. Tapley, B. D. Schutz, B. E. Eanes, R. J. |
description | An important bound on the accuracy of modern techniques for monitoring polar motion is established by intercomparison of measurement series from two different observing techniques, very long baseline interferometry and satellite laser ranging. The root-mean-square differences between the estimates of the pole position from both techniques are shown to be only 2 milliseconds of arc (about 6 centimeters at one Earth radius). In the absence of common systematic errors, these differences bound the total errors in both sets of estimates. An initial investigation did not reveal any clear signature in the pole position that seems to be associated with major earthquakes. Continued measurements at this level of accuracy hold promise for resolving long-standing arguments over such questions as the nature of the excitation mechanism required to maintain the motion of the pole. |
doi_str_mv | 10.1126/science.229.4719.1259 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_24712465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A3941384</galeid><jstor_id>1696043</jstor_id><sourcerecordid>A3941384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273</originalsourceid><addsrcrecordid>eNqN0k2LEzEYB_AgiltXv4HKHEQPa2veM-OtFq2FrhVW9xoymWdKlplJN5kB--3N0OKu0EPJIZDnl4e8_BF6Q_CMECo_ReugszCjtJhxRYoZoaJ4giYEF2JaUMyeognGTE5zrMQFehHjHcapVrDn6IIopXBO-AStf_rGhOza98532TWYOARooevj5-xmKCuwroUeQja3dgjG7rNbCK52UGXlPlt1qWR9uzPBRd-9RM9q00R4dZwv0e9vX38tvk_Xm-VqMV9PrRS8TyfKcyspKfOKGkkoFwITYUqbq7QCpVCskpRbVWFaFwwUyW2RrmilVBWnil2i94e-u-DvB4i9bl200DSmAz9ETdODUC7FeZDIsePVAW5NA9p1te_TZbfQQTCN76B2aXnOCk5YzpP-eEKnUUHr7An-4T-eRA9_-q0ZYtSrmx_nys3tufLL8kyZL9eP5dUpaX3TwBZ0-sLF5rEWB22DjzFArXfBtSbsNcF6jKg-RlSniOoxonqMaNr39vgnQ9lC9bDrmMkE3h2BidY0dTCddfGfy6WinI19Xh_YXex9eGgjC4k5Y38BXNf08A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24712167</pqid></control><display><type>article</type><title>Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison</title><source>Science Online_科学在线</source><creator>Robertson, D. S. ; Carter, W. E. ; Tapley, B. D. ; Schutz, B. E. ; Eanes, R. J.</creator><creatorcontrib>Robertson, D. S. ; Carter, W. E. ; Tapley, B. D. ; Schutz, B. E. ; Eanes, R. J.</creatorcontrib><description>An important bound on the accuracy of modern techniques for monitoring polar motion is established by intercomparison of measurement series from two different observing techniques, very long baseline interferometry and satellite laser ranging. The root-mean-square differences between the estimates of the pole position from both techniques are shown to be only 2 milliseconds of arc (about 6 centimeters at one Earth radius). In the absence of common systematic errors, these differences bound the total errors in both sets of estimates. An initial investigation did not reveal any clear signature in the pole position that seems to be associated with major earthquakes. Continued measurements at this level of accuracy hold promise for resolving long-standing arguments over such questions as the nature of the excitation mechanism required to maintain the motion of the pole.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.229.4719.1259</identifier><identifier>PMID: 17770814</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>Artificial satellites ; Astronomical rotation ; Earth ; Earth, ocean, space ; Earthquakes ; Exact sciences and technology ; External geophysics ; Geodesy ; Geodesy and gravity ; Geodetic research ; Geophysical research ; Lasers ; Measurement ; Meteorology ; Observational research ; Observations ; Radio observatories ; Rotation ; Seismological research ; Space based observatories ; Space research ; Systematic errors</subject><ispartof>Science (American Association for the Advancement of Science), 1985-09, Vol.229 (4719), p.1259-1261</ispartof><rights>Copyright 1985 The American Association for the Advancement of Science</rights><rights>1986 INIST-CNRS</rights><rights>COPYRIGHT 1985 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1985 American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273</citedby><cites>FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8672439$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17770814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robertson, D. S.</creatorcontrib><creatorcontrib>Carter, W. E.</creatorcontrib><creatorcontrib>Tapley, B. D.</creatorcontrib><creatorcontrib>Schutz, B. E.</creatorcontrib><creatorcontrib>Eanes, R. J.</creatorcontrib><title>Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>An important bound on the accuracy of modern techniques for monitoring polar motion is established by intercomparison of measurement series from two different observing techniques, very long baseline interferometry and satellite laser ranging. The root-mean-square differences between the estimates of the pole position from both techniques are shown to be only 2 milliseconds of arc (about 6 centimeters at one Earth radius). In the absence of common systematic errors, these differences bound the total errors in both sets of estimates. An initial investigation did not reveal any clear signature in the pole position that seems to be associated with major earthquakes. Continued measurements at this level of accuracy hold promise for resolving long-standing arguments over such questions as the nature of the excitation mechanism required to maintain the motion of the pole.</description><subject>Artificial satellites</subject><subject>Astronomical rotation</subject><subject>Earth</subject><subject>Earth, ocean, space</subject><subject>Earthquakes</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geodesy</subject><subject>Geodesy and gravity</subject><subject>Geodetic research</subject><subject>Geophysical research</subject><subject>Lasers</subject><subject>Measurement</subject><subject>Meteorology</subject><subject>Observational research</subject><subject>Observations</subject><subject>Radio observatories</subject><subject>Rotation</subject><subject>Seismological research</subject><subject>Space based observatories</subject><subject>Space research</subject><subject>Systematic errors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqN0k2LEzEYB_AgiltXv4HKHEQPa2veM-OtFq2FrhVW9xoymWdKlplJN5kB--3N0OKu0EPJIZDnl4e8_BF6Q_CMECo_ReugszCjtJhxRYoZoaJ4giYEF2JaUMyeognGTE5zrMQFehHjHcapVrDn6IIopXBO-AStf_rGhOza98532TWYOARooevj5-xmKCuwroUeQja3dgjG7rNbCK52UGXlPlt1qWR9uzPBRd-9RM9q00R4dZwv0e9vX38tvk_Xm-VqMV9PrRS8TyfKcyspKfOKGkkoFwITYUqbq7QCpVCskpRbVWFaFwwUyW2RrmilVBWnil2i94e-u-DvB4i9bl200DSmAz9ETdODUC7FeZDIsePVAW5NA9p1te_TZbfQQTCN76B2aXnOCk5YzpP-eEKnUUHr7An-4T-eRA9_-q0ZYtSrmx_nys3tufLL8kyZL9eP5dUpaX3TwBZ0-sLF5rEWB22DjzFArXfBtSbsNcF6jKg-RlSniOoxonqMaNr39vgnQ9lC9bDrmMkE3h2BidY0dTCddfGfy6WinI19Xh_YXex9eGgjC4k5Y38BXNf08A</recordid><startdate>19850920</startdate><enddate>19850920</enddate><creator>Robertson, D. S.</creator><creator>Carter, W. E.</creator><creator>Tapley, B. D.</creator><creator>Schutz, B. E.</creator><creator>Eanes, R. J.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19850920</creationdate><title>Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison</title><author>Robertson, D. S. ; Carter, W. E. ; Tapley, B. D. ; Schutz, B. E. ; Eanes, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Artificial satellites</topic><topic>Astronomical rotation</topic><topic>Earth</topic><topic>Earth, ocean, space</topic><topic>Earthquakes</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geodesy</topic><topic>Geodesy and gravity</topic><topic>Geodetic research</topic><topic>Geophysical research</topic><topic>Lasers</topic><topic>Measurement</topic><topic>Meteorology</topic><topic>Observational research</topic><topic>Observations</topic><topic>Radio observatories</topic><topic>Rotation</topic><topic>Seismological research</topic><topic>Space based observatories</topic><topic>Space research</topic><topic>Systematic errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robertson, D. S.</creatorcontrib><creatorcontrib>Carter, W. E.</creatorcontrib><creatorcontrib>Tapley, B. D.</creatorcontrib><creatorcontrib>Schutz, B. E.</creatorcontrib><creatorcontrib>Eanes, R. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson, D. S.</au><au>Carter, W. E.</au><au>Tapley, B. D.</au><au>Schutz, B. E.</au><au>Eanes, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1985-09-20</date><risdate>1985</risdate><volume>229</volume><issue>4719</issue><spage>1259</spage><epage>1261</epage><pages>1259-1261</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>An important bound on the accuracy of modern techniques for monitoring polar motion is established by intercomparison of measurement series from two different observing techniques, very long baseline interferometry and satellite laser ranging. The root-mean-square differences between the estimates of the pole position from both techniques are shown to be only 2 milliseconds of arc (about 6 centimeters at one Earth radius). In the absence of common systematic errors, these differences bound the total errors in both sets of estimates. An initial investigation did not reveal any clear signature in the pole position that seems to be associated with major earthquakes. Continued measurements at this level of accuracy hold promise for resolving long-standing arguments over such questions as the nature of the excitation mechanism required to maintain the motion of the pole.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>17770814</pmid><doi>10.1126/science.229.4719.1259</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1985-09, Vol.229 (4719), p.1259-1261 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_24712465 |
source | Science Online_科学在线 |
subjects | Artificial satellites Astronomical rotation Earth Earth, ocean, space Earthquakes Exact sciences and technology External geophysics Geodesy Geodesy and gravity Geodetic research Geophysical research Lasers Measurement Meteorology Observational research Observations Radio observatories Rotation Seismological research Space based observatories Space research Systematic errors |
title | Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polar%20Motion%20Measurements:%20Subdecimeter%20Accuracy%20Verified%20by%20Intercomparison&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Robertson,%20D.%20S.&rft.date=1985-09-20&rft.volume=229&rft.issue=4719&rft.spage=1259&rft.epage=1261&rft.pages=1259-1261&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.229.4719.1259&rft_dat=%3Cgale_proqu%3EA3941384%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=24712167&rft_id=info:pmid/17770814&rft_galeid=A3941384&rft_jstor_id=1696043&rfr_iscdi=true |