Loading…

Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison

An important bound on the accuracy of modern techniques for monitoring polar motion is established by intercomparison of measurement series from two different observing techniques, very long baseline interferometry and satellite laser ranging. The root-mean-square differences between the estimates o...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1985-09, Vol.229 (4719), p.1259-1261
Main Authors: Robertson, D. S., Carter, W. E., Tapley, B. D., Schutz, B. E., Eanes, R. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273
cites cdi_FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273
container_end_page 1261
container_issue 4719
container_start_page 1259
container_title Science (American Association for the Advancement of Science)
container_volume 229
creator Robertson, D. S.
Carter, W. E.
Tapley, B. D.
Schutz, B. E.
Eanes, R. J.
description An important bound on the accuracy of modern techniques for monitoring polar motion is established by intercomparison of measurement series from two different observing techniques, very long baseline interferometry and satellite laser ranging. The root-mean-square differences between the estimates of the pole position from both techniques are shown to be only 2 milliseconds of arc (about 6 centimeters at one Earth radius). In the absence of common systematic errors, these differences bound the total errors in both sets of estimates. An initial investigation did not reveal any clear signature in the pole position that seems to be associated with major earthquakes. Continued measurements at this level of accuracy hold promise for resolving long-standing arguments over such questions as the nature of the excitation mechanism required to maintain the motion of the pole.
doi_str_mv 10.1126/science.229.4719.1259
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_24712465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A3941384</galeid><jstor_id>1696043</jstor_id><sourcerecordid>A3941384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273</originalsourceid><addsrcrecordid>eNqN0k2LEzEYB_AgiltXv4HKHEQPa2veM-OtFq2FrhVW9xoymWdKlplJN5kB--3N0OKu0EPJIZDnl4e8_BF6Q_CMECo_ReugszCjtJhxRYoZoaJ4giYEF2JaUMyeognGTE5zrMQFehHjHcapVrDn6IIopXBO-AStf_rGhOza98532TWYOARooevj5-xmKCuwroUeQja3dgjG7rNbCK52UGXlPlt1qWR9uzPBRd-9RM9q00R4dZwv0e9vX38tvk_Xm-VqMV9PrRS8TyfKcyspKfOKGkkoFwITYUqbq7QCpVCskpRbVWFaFwwUyW2RrmilVBWnil2i94e-u-DvB4i9bl200DSmAz9ETdODUC7FeZDIsePVAW5NA9p1te_TZbfQQTCN76B2aXnOCk5YzpP-eEKnUUHr7An-4T-eRA9_-q0ZYtSrmx_nys3tufLL8kyZL9eP5dUpaX3TwBZ0-sLF5rEWB22DjzFArXfBtSbsNcF6jKg-RlSniOoxonqMaNr39vgnQ9lC9bDrmMkE3h2BidY0dTCddfGfy6WinI19Xh_YXex9eGgjC4k5Y38BXNf08A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24712167</pqid></control><display><type>article</type><title>Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison</title><source>Science Online_科学在线</source><creator>Robertson, D. S. ; Carter, W. E. ; Tapley, B. D. ; Schutz, B. E. ; Eanes, R. J.</creator><creatorcontrib>Robertson, D. S. ; Carter, W. E. ; Tapley, B. D. ; Schutz, B. E. ; Eanes, R. J.</creatorcontrib><description>An important bound on the accuracy of modern techniques for monitoring polar motion is established by intercomparison of measurement series from two different observing techniques, very long baseline interferometry and satellite laser ranging. The root-mean-square differences between the estimates of the pole position from both techniques are shown to be only 2 milliseconds of arc (about 6 centimeters at one Earth radius). In the absence of common systematic errors, these differences bound the total errors in both sets of estimates. An initial investigation did not reveal any clear signature in the pole position that seems to be associated with major earthquakes. Continued measurements at this level of accuracy hold promise for resolving long-standing arguments over such questions as the nature of the excitation mechanism required to maintain the motion of the pole.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.229.4719.1259</identifier><identifier>PMID: 17770814</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>Artificial satellites ; Astronomical rotation ; Earth ; Earth, ocean, space ; Earthquakes ; Exact sciences and technology ; External geophysics ; Geodesy ; Geodesy and gravity ; Geodetic research ; Geophysical research ; Lasers ; Measurement ; Meteorology ; Observational research ; Observations ; Radio observatories ; Rotation ; Seismological research ; Space based observatories ; Space research ; Systematic errors</subject><ispartof>Science (American Association for the Advancement of Science), 1985-09, Vol.229 (4719), p.1259-1261</ispartof><rights>Copyright 1985 The American Association for the Advancement of Science</rights><rights>1986 INIST-CNRS</rights><rights>COPYRIGHT 1985 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1985 American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273</citedby><cites>FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8672439$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17770814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robertson, D. S.</creatorcontrib><creatorcontrib>Carter, W. E.</creatorcontrib><creatorcontrib>Tapley, B. D.</creatorcontrib><creatorcontrib>Schutz, B. E.</creatorcontrib><creatorcontrib>Eanes, R. J.</creatorcontrib><title>Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>An important bound on the accuracy of modern techniques for monitoring polar motion is established by intercomparison of measurement series from two different observing techniques, very long baseline interferometry and satellite laser ranging. The root-mean-square differences between the estimates of the pole position from both techniques are shown to be only 2 milliseconds of arc (about 6 centimeters at one Earth radius). In the absence of common systematic errors, these differences bound the total errors in both sets of estimates. An initial investigation did not reveal any clear signature in the pole position that seems to be associated with major earthquakes. Continued measurements at this level of accuracy hold promise for resolving long-standing arguments over such questions as the nature of the excitation mechanism required to maintain the motion of the pole.</description><subject>Artificial satellites</subject><subject>Astronomical rotation</subject><subject>Earth</subject><subject>Earth, ocean, space</subject><subject>Earthquakes</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geodesy</subject><subject>Geodesy and gravity</subject><subject>Geodetic research</subject><subject>Geophysical research</subject><subject>Lasers</subject><subject>Measurement</subject><subject>Meteorology</subject><subject>Observational research</subject><subject>Observations</subject><subject>Radio observatories</subject><subject>Rotation</subject><subject>Seismological research</subject><subject>Space based observatories</subject><subject>Space research</subject><subject>Systematic errors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqN0k2LEzEYB_AgiltXv4HKHEQPa2veM-OtFq2FrhVW9xoymWdKlplJN5kB--3N0OKu0EPJIZDnl4e8_BF6Q_CMECo_ReugszCjtJhxRYoZoaJ4giYEF2JaUMyeognGTE5zrMQFehHjHcapVrDn6IIopXBO-AStf_rGhOza98532TWYOARooevj5-xmKCuwroUeQja3dgjG7rNbCK52UGXlPlt1qWR9uzPBRd-9RM9q00R4dZwv0e9vX38tvk_Xm-VqMV9PrRS8TyfKcyspKfOKGkkoFwITYUqbq7QCpVCskpRbVWFaFwwUyW2RrmilVBWnil2i94e-u-DvB4i9bl200DSmAz9ETdODUC7FeZDIsePVAW5NA9p1te_TZbfQQTCN76B2aXnOCk5YzpP-eEKnUUHr7An-4T-eRA9_-q0ZYtSrmx_nys3tufLL8kyZL9eP5dUpaX3TwBZ0-sLF5rEWB22DjzFArXfBtSbsNcF6jKg-RlSniOoxonqMaNr39vgnQ9lC9bDrmMkE3h2BidY0dTCddfGfy6WinI19Xh_YXex9eGgjC4k5Y38BXNf08A</recordid><startdate>19850920</startdate><enddate>19850920</enddate><creator>Robertson, D. S.</creator><creator>Carter, W. E.</creator><creator>Tapley, B. D.</creator><creator>Schutz, B. E.</creator><creator>Eanes, R. J.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19850920</creationdate><title>Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison</title><author>Robertson, D. S. ; Carter, W. E. ; Tapley, B. D. ; Schutz, B. E. ; Eanes, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Artificial satellites</topic><topic>Astronomical rotation</topic><topic>Earth</topic><topic>Earth, ocean, space</topic><topic>Earthquakes</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geodesy</topic><topic>Geodesy and gravity</topic><topic>Geodetic research</topic><topic>Geophysical research</topic><topic>Lasers</topic><topic>Measurement</topic><topic>Meteorology</topic><topic>Observational research</topic><topic>Observations</topic><topic>Radio observatories</topic><topic>Rotation</topic><topic>Seismological research</topic><topic>Space based observatories</topic><topic>Space research</topic><topic>Systematic errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robertson, D. S.</creatorcontrib><creatorcontrib>Carter, W. E.</creatorcontrib><creatorcontrib>Tapley, B. D.</creatorcontrib><creatorcontrib>Schutz, B. E.</creatorcontrib><creatorcontrib>Eanes, R. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson, D. S.</au><au>Carter, W. E.</au><au>Tapley, B. D.</au><au>Schutz, B. E.</au><au>Eanes, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1985-09-20</date><risdate>1985</risdate><volume>229</volume><issue>4719</issue><spage>1259</spage><epage>1261</epage><pages>1259-1261</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>An important bound on the accuracy of modern techniques for monitoring polar motion is established by intercomparison of measurement series from two different observing techniques, very long baseline interferometry and satellite laser ranging. The root-mean-square differences between the estimates of the pole position from both techniques are shown to be only 2 milliseconds of arc (about 6 centimeters at one Earth radius). In the absence of common systematic errors, these differences bound the total errors in both sets of estimates. An initial investigation did not reveal any clear signature in the pole position that seems to be associated with major earthquakes. Continued measurements at this level of accuracy hold promise for resolving long-standing arguments over such questions as the nature of the excitation mechanism required to maintain the motion of the pole.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>17770814</pmid><doi>10.1126/science.229.4719.1259</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1985-09, Vol.229 (4719), p.1259-1261
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_24712465
source Science Online_科学在线
subjects Artificial satellites
Astronomical rotation
Earth
Earth, ocean, space
Earthquakes
Exact sciences and technology
External geophysics
Geodesy
Geodesy and gravity
Geodetic research
Geophysical research
Lasers
Measurement
Meteorology
Observational research
Observations
Radio observatories
Rotation
Seismological research
Space based observatories
Space research
Systematic errors
title Polar Motion Measurements: Subdecimeter Accuracy Verified by Intercomparison
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polar%20Motion%20Measurements:%20Subdecimeter%20Accuracy%20Verified%20by%20Intercomparison&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Robertson,%20D.%20S.&rft.date=1985-09-20&rft.volume=229&rft.issue=4719&rft.spage=1259&rft.epage=1261&rft.pages=1259-1261&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.229.4719.1259&rft_dat=%3Cgale_proqu%3EA3941384%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c654t-8088c621b8d2a612455015abc878d2eb573d624c7d02f93e718c9719c667d4273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=24712167&rft_id=info:pmid/17770814&rft_galeid=A3941384&rft_jstor_id=1696043&rfr_iscdi=true