Loading…

Predicting Amyloid Pathology in Mild Cognitive Impairment Using Radiomics Analysis of Magnetic Resonance Imaging

Background: Noninvasive identification of amyloid-β (Aβ) is important for better clinical management of mild cognitive impairment (MCI) patients. Objective: To investigate whether radiomics features in the hippocampus in MCI improve the prediction of cerebrospinal fluid (CSF) Aβ42 status when integr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Alzheimer's disease 2021-01, Vol.79 (2), p.483-491
Main Authors: Park, Yae Won, Choi, Dongmin, Park, Mina, Ahn, Sung Jun, Ahn, Sung Soo, Suh, Sang Hyun, Lee, Seung-Koo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-fbc42fe85c1d837c9738e70128d947217aa1d9854d090e59117aebfa72827f893
cites cdi_FETCH-LOGICAL-c449t-fbc42fe85c1d837c9738e70128d947217aa1d9854d090e59117aebfa72827f893
container_end_page 491
container_issue 2
container_start_page 483
container_title Journal of Alzheimer's disease
container_volume 79
creator Park, Yae Won
Choi, Dongmin
Park, Mina
Ahn, Sung Jun
Ahn, Sung Soo
Suh, Sang Hyun
Lee, Seung-Koo
description Background: Noninvasive identification of amyloid-β (Aβ) is important for better clinical management of mild cognitive impairment (MCI) patients. Objective: To investigate whether radiomics features in the hippocampus in MCI improve the prediction of cerebrospinal fluid (CSF) Aβ42 status when integrated with clinical profiles. Methods: A total of 407 MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative were allocated to training (n = 324) and test (n = 83) sets. Radiomics features (n = 214) from the bilateral hippocampus were extracted from magnetic resonance imaging (MRI). A cut-off of
doi_str_mv 10.3233/JAD-200734
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471458760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3233_JAD-200734</sage_id><sourcerecordid>2478784870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-fbc42fe85c1d837c9738e70128d947217aa1d9854d090e59117aebfa72827f893</originalsourceid><addsrcrecordid>eNptkVtLJDEQhYOs7Hh78QcsgX1QhNbceip5HMbbiLIi-txkknRvhu5k7PQI8-_N7LgKy9ZLFeE7p0gdhI4pOeeM84u7yWXBCAEudtAelVAWUhH5Lc9cQsEkwAjtp7QghHCi4Dsa8VzAx3QPLR97Z70ZfGjwpFu30Vv8qIffsY3NGvuAH3xr8TQ2wQ_-zeFZt9S-71wY8EvaiJ609bHzJuFJ0O06-YRjjR90E9zgDX5yKQYdzEapmyw4RLu1bpM7-ugH6OX66nl6W9z_uplNJ_eFEUINRT03gtVOloZaycEo4NIBoUxaJYBR0JpaJUthiSKuVDS_uHmtgUkGtVT8AJ1ufZd9fF25NFSdT8a1rQ4urlLFBFBRShiTjP78B13EVZ9_84eSIIWEDXW2pUwfU-pdXS173-l-XVFSbXKocg7VNocM__iwXM07Zz_Rv4fPwMkWSLpxX_v-Y_UORoiOEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478784870</pqid></control><display><type>article</type><title>Predicting Amyloid Pathology in Mild Cognitive Impairment Using Radiomics Analysis of Magnetic Resonance Imaging</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Park, Yae Won ; Choi, Dongmin ; Park, Mina ; Ahn, Sung Jun ; Ahn, Sung Soo ; Suh, Sang Hyun ; Lee, Seung-Koo</creator><creatorcontrib>Park, Yae Won ; Choi, Dongmin ; Park, Mina ; Ahn, Sung Jun ; Ahn, Sung Soo ; Suh, Sang Hyun ; Lee, Seung-Koo ; Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><description>Background: Noninvasive identification of amyloid-β (Aβ) is important for better clinical management of mild cognitive impairment (MCI) patients. Objective: To investigate whether radiomics features in the hippocampus in MCI improve the prediction of cerebrospinal fluid (CSF) Aβ42 status when integrated with clinical profiles. Methods: A total of 407 MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative were allocated to training (n = 324) and test (n = 83) sets. Radiomics features (n = 214) from the bilateral hippocampus were extracted from magnetic resonance imaging (MRI). A cut-off of &lt;192 pg/mL was applied to define CSF Aβ42 status. After feature selection, random forest with subsampling methods were utilized to develop three models with which to predict CSF Aβ42: 1) a radiomics model; 2) a clinical model based on clinical profiles; and 3) a combined model based on radiomics and clinical profiles. The prediction performances thereof were validated in the test set. A prediction model using hippocampus volume was also developed and validated. Results: The best-performing radiomics model showed an area under the curve (AUC) of 0.674 in the test set. The best-performing clinical model showed an AUC of 0.758 in the test set. The best-performing combined model showed an AUC of 0.823 in the test set. The hippocampal volume model showed a lower performance, with an AUC of 0.543 in the test set. Conclusion: Radiomics models from MRI can help predict CSF Aβ42 status in MCI patients and potentially triage the patients for invasive and costly Aβ tests.</description><identifier>ISSN: 1387-2877</identifier><identifier>EISSN: 1875-8908</identifier><identifier>DOI: 10.3233/JAD-200734</identifier><identifier>PMID: 33337361</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Alzheimer's disease ; Amyloid ; Artificial intelligence ; Cerebrospinal fluid ; Cognitive ability ; Feature extraction ; Hippocampus ; Impairment ; Magnetic resonance imaging ; Medical imaging ; Neurodegenerative diseases ; Neuroimaging ; Prediction models ; Radiomics ; Resonance ; Test sets</subject><ispartof>Journal of Alzheimer's disease, 2021-01, Vol.79 (2), p.483-491</ispartof><rights>2021 – IOS Press. All rights reserved</rights><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-fbc42fe85c1d837c9738e70128d947217aa1d9854d090e59117aebfa72827f893</citedby><cites>FETCH-LOGICAL-c449t-fbc42fe85c1d837c9738e70128d947217aa1d9854d090e59117aebfa72827f893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33337361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Yae Won</creatorcontrib><creatorcontrib>Choi, Dongmin</creatorcontrib><creatorcontrib>Park, Mina</creatorcontrib><creatorcontrib>Ahn, Sung Jun</creatorcontrib><creatorcontrib>Ahn, Sung Soo</creatorcontrib><creatorcontrib>Suh, Sang Hyun</creatorcontrib><creatorcontrib>Lee, Seung-Koo</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><title>Predicting Amyloid Pathology in Mild Cognitive Impairment Using Radiomics Analysis of Magnetic Resonance Imaging</title><title>Journal of Alzheimer's disease</title><addtitle>J Alzheimers Dis</addtitle><description>Background: Noninvasive identification of amyloid-β (Aβ) is important for better clinical management of mild cognitive impairment (MCI) patients. Objective: To investigate whether radiomics features in the hippocampus in MCI improve the prediction of cerebrospinal fluid (CSF) Aβ42 status when integrated with clinical profiles. Methods: A total of 407 MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative were allocated to training (n = 324) and test (n = 83) sets. Radiomics features (n = 214) from the bilateral hippocampus were extracted from magnetic resonance imaging (MRI). A cut-off of &lt;192 pg/mL was applied to define CSF Aβ42 status. After feature selection, random forest with subsampling methods were utilized to develop three models with which to predict CSF Aβ42: 1) a radiomics model; 2) a clinical model based on clinical profiles; and 3) a combined model based on radiomics and clinical profiles. The prediction performances thereof were validated in the test set. A prediction model using hippocampus volume was also developed and validated. Results: The best-performing radiomics model showed an area under the curve (AUC) of 0.674 in the test set. The best-performing clinical model showed an AUC of 0.758 in the test set. The best-performing combined model showed an AUC of 0.823 in the test set. The hippocampal volume model showed a lower performance, with an AUC of 0.543 in the test set. Conclusion: Radiomics models from MRI can help predict CSF Aβ42 status in MCI patients and potentially triage the patients for invasive and costly Aβ tests.</description><subject>Alzheimer's disease</subject><subject>Amyloid</subject><subject>Artificial intelligence</subject><subject>Cerebrospinal fluid</subject><subject>Cognitive ability</subject><subject>Feature extraction</subject><subject>Hippocampus</subject><subject>Impairment</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Prediction models</subject><subject>Radiomics</subject><subject>Resonance</subject><subject>Test sets</subject><issn>1387-2877</issn><issn>1875-8908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkVtLJDEQhYOs7Hh78QcsgX1QhNbceip5HMbbiLIi-txkknRvhu5k7PQI8-_N7LgKy9ZLFeE7p0gdhI4pOeeM84u7yWXBCAEudtAelVAWUhH5Lc9cQsEkwAjtp7QghHCi4Dsa8VzAx3QPLR97Z70ZfGjwpFu30Vv8qIffsY3NGvuAH3xr8TQ2wQ_-zeFZt9S-71wY8EvaiJ609bHzJuFJ0O06-YRjjR90E9zgDX5yKQYdzEapmyw4RLu1bpM7-ugH6OX66nl6W9z_uplNJ_eFEUINRT03gtVOloZaycEo4NIBoUxaJYBR0JpaJUthiSKuVDS_uHmtgUkGtVT8AJ1ufZd9fF25NFSdT8a1rQ4urlLFBFBRShiTjP78B13EVZ9_84eSIIWEDXW2pUwfU-pdXS173-l-XVFSbXKocg7VNocM__iwXM07Zz_Rv4fPwMkWSLpxX_v-Y_UORoiOEg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Park, Yae Won</creator><creator>Choi, Dongmin</creator><creator>Park, Mina</creator><creator>Ahn, Sung Jun</creator><creator>Ahn, Sung Soo</creator><creator>Suh, Sang Hyun</creator><creator>Lee, Seung-Koo</creator><general>SAGE Publications</general><general>IOS Press BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20210101</creationdate><title>Predicting Amyloid Pathology in Mild Cognitive Impairment Using Radiomics Analysis of Magnetic Resonance Imaging</title><author>Park, Yae Won ; Choi, Dongmin ; Park, Mina ; Ahn, Sung Jun ; Ahn, Sung Soo ; Suh, Sang Hyun ; Lee, Seung-Koo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-fbc42fe85c1d837c9738e70128d947217aa1d9854d090e59117aebfa72827f893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alzheimer's disease</topic><topic>Amyloid</topic><topic>Artificial intelligence</topic><topic>Cerebrospinal fluid</topic><topic>Cognitive ability</topic><topic>Feature extraction</topic><topic>Hippocampus</topic><topic>Impairment</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Prediction models</topic><topic>Radiomics</topic><topic>Resonance</topic><topic>Test sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Yae Won</creatorcontrib><creatorcontrib>Choi, Dongmin</creatorcontrib><creatorcontrib>Park, Mina</creatorcontrib><creatorcontrib>Ahn, Sung Jun</creatorcontrib><creatorcontrib>Ahn, Sung Soo</creatorcontrib><creatorcontrib>Suh, Sang Hyun</creatorcontrib><creatorcontrib>Lee, Seung-Koo</creatorcontrib><creatorcontrib>Alzheimer’s Disease Neuroimaging Initiative</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Alzheimer's disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Yae Won</au><au>Choi, Dongmin</au><au>Park, Mina</au><au>Ahn, Sung Jun</au><au>Ahn, Sung Soo</au><au>Suh, Sang Hyun</au><au>Lee, Seung-Koo</au><aucorp>Alzheimer’s Disease Neuroimaging Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Amyloid Pathology in Mild Cognitive Impairment Using Radiomics Analysis of Magnetic Resonance Imaging</atitle><jtitle>Journal of Alzheimer's disease</jtitle><addtitle>J Alzheimers Dis</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>79</volume><issue>2</issue><spage>483</spage><epage>491</epage><pages>483-491</pages><issn>1387-2877</issn><eissn>1875-8908</eissn><abstract>Background: Noninvasive identification of amyloid-β (Aβ) is important for better clinical management of mild cognitive impairment (MCI) patients. Objective: To investigate whether radiomics features in the hippocampus in MCI improve the prediction of cerebrospinal fluid (CSF) Aβ42 status when integrated with clinical profiles. Methods: A total of 407 MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative were allocated to training (n = 324) and test (n = 83) sets. Radiomics features (n = 214) from the bilateral hippocampus were extracted from magnetic resonance imaging (MRI). A cut-off of &lt;192 pg/mL was applied to define CSF Aβ42 status. After feature selection, random forest with subsampling methods were utilized to develop three models with which to predict CSF Aβ42: 1) a radiomics model; 2) a clinical model based on clinical profiles; and 3) a combined model based on radiomics and clinical profiles. The prediction performances thereof were validated in the test set. A prediction model using hippocampus volume was also developed and validated. Results: The best-performing radiomics model showed an area under the curve (AUC) of 0.674 in the test set. The best-performing clinical model showed an AUC of 0.758 in the test set. The best-performing combined model showed an AUC of 0.823 in the test set. The hippocampal volume model showed a lower performance, with an AUC of 0.543 in the test set. Conclusion: Radiomics models from MRI can help predict CSF Aβ42 status in MCI patients and potentially triage the patients for invasive and costly Aβ tests.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>33337361</pmid><doi>10.3233/JAD-200734</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1387-2877
ispartof Journal of Alzheimer's disease, 2021-01, Vol.79 (2), p.483-491
issn 1387-2877
1875-8908
language eng
recordid cdi_proquest_miscellaneous_2471458760
source SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)
subjects Alzheimer's disease
Amyloid
Artificial intelligence
Cerebrospinal fluid
Cognitive ability
Feature extraction
Hippocampus
Impairment
Magnetic resonance imaging
Medical imaging
Neurodegenerative diseases
Neuroimaging
Prediction models
Radiomics
Resonance
Test sets
title Predicting Amyloid Pathology in Mild Cognitive Impairment Using Radiomics Analysis of Magnetic Resonance Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T07%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Amyloid%20Pathology%20in%20Mild%20Cognitive%20Impairment%20Using%20Radiomics%20Analysis%20of%20Magnetic%20Resonance%20Imaging&rft.jtitle=Journal%20of%20Alzheimer's%20disease&rft.au=Park,%20Yae%20Won&rft.aucorp=Alzheimer%E2%80%99s%20Disease%20Neuroimaging%20Initiative&rft.date=2021-01-01&rft.volume=79&rft.issue=2&rft.spage=483&rft.epage=491&rft.pages=483-491&rft.issn=1387-2877&rft.eissn=1875-8908&rft_id=info:doi/10.3233/JAD-200734&rft_dat=%3Cproquest_cross%3E2478784870%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-fbc42fe85c1d837c9738e70128d947217aa1d9854d090e59117aebfa72827f893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478784870&rft_id=info:pmid/33337361&rft_sage_id=10.3233_JAD-200734&rfr_iscdi=true