Loading…
Soft-Mode-Phonon-Mediated Unconventional Superconductivity in Monolayer 1T^{'}-WTe_{2}
Recent experiments have tuned the monolayer 1T^{'}-WTe_{2} to be superconducting by electrostatic gating. Here, we theoretically study the phonon-mediated superconductivity in monolayer 1T^{'}-WTe_{2} via charge doping. We reveal that the emergence of soft-mode phonons with specific moment...
Saved in:
Published in: | Physical review letters 2020-12, Vol.125 (23), p.237006-237006 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent experiments have tuned the monolayer 1T^{'}-WTe_{2} to be superconducting by electrostatic gating. Here, we theoretically study the phonon-mediated superconductivity in monolayer 1T^{'}-WTe_{2} via charge doping. We reveal that the emergence of soft-mode phonons with specific momentum is crucial to give rise to the superconductivity in the electron-doping regime, whereas no such soft-mode phonons and no superconductivity emerge in the hole-doping regime. We also find a superconducting dome, which can be attributed to the change of Fermi surface nesting conditions with electron doping. By taking into account the experimentally established strong anisotropy of temperature-dependent upper critical field H_{c2} between the in-plane and out-of-plane directions, we show that the superconducting state probably has the unconventional equal-spin-triplet pairing in the A_{u} channel of the C_{2h} point group. Our studies provide a promising understanding to the doping dependent superconductivity and strong anisotropy of H_{c2} in monolayer 1T^{'}-WTe_{2}, and can be extended to understand the superconductivity in other gated transition metal dichalcogenides. |
---|---|
ISSN: | 1079-7114 |
DOI: | 10.1103/PhysRevLett.125.237006 |