Loading…

Short-Range Order in GeSn Alloy

Group IV alloys have been long viewed as homogeneous random solid solutions since perceiving them as Si-compatible, direct-band gap semiconductors 30 years ago. Such a perception underlies the understanding, interpretation, and prediction of alloys’ properties. However, as the race to create scalabl...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-12, Vol.12 (51), p.57245-57253
Main Authors: Cao, Boxiao, Chen, Shunda, Jin, Xiaochen, Liu, Jifeng, Li, Tianshu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Group IV alloys have been long viewed as homogeneous random solid solutions since perceiving them as Si-compatible, direct-band gap semiconductors 30 years ago. Such a perception underlies the understanding, interpretation, and prediction of alloys’ properties. However, as the race to create scalable and tunable device materials enters a composition domain far beyond the alloys’ equilibrium solubility, a fundamental question emerges as to how random these alloys truly are. Here, we show, by combining statistical sampling and large-scale ab initio calculations, that GeSn alloy, a promising group IV alloy for mid-infrared technology, exhibits a clear short-range order for solute atoms within its entire composition range. Such a short-range order is further found to substantially affect the electronic properties of GeSn. We demonstrate that the proper inclusion of this short-range order through canonical sampling can lead to a significant improvement over previous predictions on alloy’s band gaps by showing an excellent agreement with experiments within the entire studied composition range. Our finding thus not only calls for an important revision of the current structural model for group IV alloy but also suggests that short-range order may generically exist in different types of alloys.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c18483