Loading…

An organisational systems-biology view of viruses explains why they are not alive

Whether or not viruses are alive remains unsettled. Discoveries of giant viruses with translational genes and large genomes have kept the debate active. Here, a fresh approach is introduced, based on the organisational definition of life from within systems biology. It views living as a circular pro...

Full description

Saved in:
Bibliographic Details
Published in:BioSystems 2021-02, Vol.200, p.104324-104324, Article 104324
Main Author: Farnsworth, Keith D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Whether or not viruses are alive remains unsettled. Discoveries of giant viruses with translational genes and large genomes have kept the debate active. Here, a fresh approach is introduced, based on the organisational definition of life from within systems biology. It views living as a circular process of self-organisation and self-construction which is ‘closed to efficient causation’. How information combines with force to fabricate and organise environmentally obtained materials, given an energy source, is here explained as a physical embodiment of informational constraint. Comparing a general virus replication cycle with Rosen’s (M,R)-system shows it to be linear, rather than closed. Some viruses contribute considerable organisational information, but so far none is known to supply all required, nor the material nor energy necessary to complete their replication cycle. As a result, no known virus replication cycle is closed to efficient causation: unlike cellular obligate parasites, viruses do not match the causal structure of an (M,R)-system. Analysis based in identifying a Markov blanket in causal structure proved inconclusive, but using Integrated Information Theory on a Boolean representation, it was possible to show that the causal structure of a virocell is not different from that of the host cell.
ISSN:0303-2647
1872-8324
DOI:10.1016/j.biosystems.2020.104324