Loading…
Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity
During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems...
Saved in:
Published in: | Journal of the American Chemical Society 2021-01, Vol.143 (1), p.399-408 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3 |
container_end_page | 408 |
container_issue | 1 |
container_start_page | 399 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Jia, Pei-Pei Xu, Lin Hu, Yi-Xiong Li, Wei-Jian Wang, Xu-Qing Ling, Qing-Hui Shi, Xueliang Yin, Guang-Qiang Li, Xiaopeng Sun, Haitao Jiang, Yanrong Yang, Hai-Bo |
description | During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems with precise control of the distances between locations and the numbers of fluorophores. Herein we present the successful fabrication of a two-step FRET system bearing specific numbers of anthracene, coumarin, and BODIPY moieties at precise distances and locations through an efficient and controllable orthogonal self-assembly approach based on metal-ligand coordination and host-guest interactions. Notably, the photosensitization efficiency and photooxidation activity of the two-step FRET system gradually increased with the number of energy transfer steps. For example, the two-step FRET system exhibited 1.5-fold higher
O
generation efficiency and 1.2-fold higher photooxidation activity than that of its corresponding one-step FRET system. This research not only provides the first successful example of the efficient preparation of multistep FRET systems through orthogonal self-assembly involving coordination and host-guest interactions but also pushes multistep FRET systems toward the application of photosensitized oxidation of a sulfur mustard simulant. |
doi_str_mv | 10.1021/jacs.0c11370 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473749226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473749226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3</originalsourceid><addsrcrecordid>eNo9kctOwzAURC0EgvLYsUZesiDgR-Iky6pqAQmpiJZ15DrX1CiJi-22hG_hYzFqYeWxfGZ0rwehS0puKWH07l0qf0sUpTwnB2hAM0aSjDJxiAaEEJbkheAn6NT793hNWUGP0QnnPKdCiAH6nrqwtG-2kw2eQaOToffQLpoeW40lnm9tMguwwpNmbR14BZ2C5AV8NESFxx24tx7Pney8BodnvQ_Q4q0JS_zYrpzdQI2flzZYD503wXzJYGyHx1obZWJYj2W3J-ynqXevQxXMxoT-HB1p2Xi42J9n6HUyno8ekqfp_eNo-JQoVtKQ8LKkuaRacw5ZWWZK1UVUuVSccc1yHSUvqcziF6UiLWgtyjTTaSb5QhSp5mfoepcbB_5Ygw9Va-KqTSM7sGtfsTSPzpIxEdGbHaqc9d6BrlbOtNL1FSXVbx_Vbx_Vvo-IX-2T14sW6n_4rwD-A2hkibc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473749226</pqid></control><display><type>article</type><title>Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Jia, Pei-Pei ; Xu, Lin ; Hu, Yi-Xiong ; Li, Wei-Jian ; Wang, Xu-Qing ; Ling, Qing-Hui ; Shi, Xueliang ; Yin, Guang-Qiang ; Li, Xiaopeng ; Sun, Haitao ; Jiang, Yanrong ; Yang, Hai-Bo</creator><creatorcontrib>Jia, Pei-Pei ; Xu, Lin ; Hu, Yi-Xiong ; Li, Wei-Jian ; Wang, Xu-Qing ; Ling, Qing-Hui ; Shi, Xueliang ; Yin, Guang-Qiang ; Li, Xiaopeng ; Sun, Haitao ; Jiang, Yanrong ; Yang, Hai-Bo</creatorcontrib><description>During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems with precise control of the distances between locations and the numbers of fluorophores. Herein we present the successful fabrication of a two-step FRET system bearing specific numbers of anthracene, coumarin, and BODIPY moieties at precise distances and locations through an efficient and controllable orthogonal self-assembly approach based on metal-ligand coordination and host-guest interactions. Notably, the photosensitization efficiency and photooxidation activity of the two-step FRET system gradually increased with the number of energy transfer steps. For example, the two-step FRET system exhibited 1.5-fold higher
O
generation efficiency and 1.2-fold higher photooxidation activity than that of its corresponding one-step FRET system. This research not only provides the first successful example of the efficient preparation of multistep FRET systems through orthogonal self-assembly involving coordination and host-guest interactions but also pushes multistep FRET systems toward the application of photosensitized oxidation of a sulfur mustard simulant.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c11370</identifier><identifier>PMID: 33371666</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the American Chemical Society, 2021-01, Vol.143 (1), p.399-408</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3</citedby><cites>FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3</cites><orcidid>0000-0001-9655-9551 ; 0000-0003-4926-1618 ; 0000-0003-1471-8876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33371666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Pei-Pei</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Hu, Yi-Xiong</creatorcontrib><creatorcontrib>Li, Wei-Jian</creatorcontrib><creatorcontrib>Wang, Xu-Qing</creatorcontrib><creatorcontrib>Ling, Qing-Hui</creatorcontrib><creatorcontrib>Shi, Xueliang</creatorcontrib><creatorcontrib>Yin, Guang-Qiang</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Sun, Haitao</creatorcontrib><creatorcontrib>Jiang, Yanrong</creatorcontrib><creatorcontrib>Yang, Hai-Bo</creatorcontrib><title>Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity</title><title>Journal of the American Chemical Society</title><addtitle>J Am Chem Soc</addtitle><description>During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems with precise control of the distances between locations and the numbers of fluorophores. Herein we present the successful fabrication of a two-step FRET system bearing specific numbers of anthracene, coumarin, and BODIPY moieties at precise distances and locations through an efficient and controllable orthogonal self-assembly approach based on metal-ligand coordination and host-guest interactions. Notably, the photosensitization efficiency and photooxidation activity of the two-step FRET system gradually increased with the number of energy transfer steps. For example, the two-step FRET system exhibited 1.5-fold higher
O
generation efficiency and 1.2-fold higher photooxidation activity than that of its corresponding one-step FRET system. This research not only provides the first successful example of the efficient preparation of multistep FRET systems through orthogonal self-assembly involving coordination and host-guest interactions but also pushes multistep FRET systems toward the application of photosensitized oxidation of a sulfur mustard simulant.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kctOwzAURC0EgvLYsUZesiDgR-Iky6pqAQmpiJZ15DrX1CiJi-22hG_hYzFqYeWxfGZ0rwehS0puKWH07l0qf0sUpTwnB2hAM0aSjDJxiAaEEJbkheAn6NT793hNWUGP0QnnPKdCiAH6nrqwtG-2kw2eQaOToffQLpoeW40lnm9tMguwwpNmbR14BZ2C5AV8NESFxx24tx7Pney8BodnvQ_Q4q0JS_zYrpzdQI2flzZYD503wXzJYGyHx1obZWJYj2W3J-ynqXevQxXMxoT-HB1p2Xi42J9n6HUyno8ekqfp_eNo-JQoVtKQ8LKkuaRacw5ZWWZK1UVUuVSccc1yHSUvqcziF6UiLWgtyjTTaSb5QhSp5mfoepcbB_5Ygw9Va-KqTSM7sGtfsTSPzpIxEdGbHaqc9d6BrlbOtNL1FSXVbx_Vbx_Vvo-IX-2T14sW6n_4rwD-A2hkibc</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Jia, Pei-Pei</creator><creator>Xu, Lin</creator><creator>Hu, Yi-Xiong</creator><creator>Li, Wei-Jian</creator><creator>Wang, Xu-Qing</creator><creator>Ling, Qing-Hui</creator><creator>Shi, Xueliang</creator><creator>Yin, Guang-Qiang</creator><creator>Li, Xiaopeng</creator><creator>Sun, Haitao</creator><creator>Jiang, Yanrong</creator><creator>Yang, Hai-Bo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9655-9551</orcidid><orcidid>https://orcid.org/0000-0003-4926-1618</orcidid><orcidid>https://orcid.org/0000-0003-1471-8876</orcidid></search><sort><creationdate>20210113</creationdate><title>Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity</title><author>Jia, Pei-Pei ; Xu, Lin ; Hu, Yi-Xiong ; Li, Wei-Jian ; Wang, Xu-Qing ; Ling, Qing-Hui ; Shi, Xueliang ; Yin, Guang-Qiang ; Li, Xiaopeng ; Sun, Haitao ; Jiang, Yanrong ; Yang, Hai-Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Pei-Pei</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Hu, Yi-Xiong</creatorcontrib><creatorcontrib>Li, Wei-Jian</creatorcontrib><creatorcontrib>Wang, Xu-Qing</creatorcontrib><creatorcontrib>Ling, Qing-Hui</creatorcontrib><creatorcontrib>Shi, Xueliang</creatorcontrib><creatorcontrib>Yin, Guang-Qiang</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Sun, Haitao</creatorcontrib><creatorcontrib>Jiang, Yanrong</creatorcontrib><creatorcontrib>Yang, Hai-Bo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Pei-Pei</au><au>Xu, Lin</au><au>Hu, Yi-Xiong</au><au>Li, Wei-Jian</au><au>Wang, Xu-Qing</au><au>Ling, Qing-Hui</au><au>Shi, Xueliang</au><au>Yin, Guang-Qiang</au><au>Li, Xiaopeng</au><au>Sun, Haitao</au><au>Jiang, Yanrong</au><au>Yang, Hai-Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J Am Chem Soc</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>143</volume><issue>1</issue><spage>399</spage><epage>408</epage><pages>399-408</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems with precise control of the distances between locations and the numbers of fluorophores. Herein we present the successful fabrication of a two-step FRET system bearing specific numbers of anthracene, coumarin, and BODIPY moieties at precise distances and locations through an efficient and controllable orthogonal self-assembly approach based on metal-ligand coordination and host-guest interactions. Notably, the photosensitization efficiency and photooxidation activity of the two-step FRET system gradually increased with the number of energy transfer steps. For example, the two-step FRET system exhibited 1.5-fold higher
O
generation efficiency and 1.2-fold higher photooxidation activity than that of its corresponding one-step FRET system. This research not only provides the first successful example of the efficient preparation of multistep FRET systems through orthogonal self-assembly involving coordination and host-guest interactions but also pushes multistep FRET systems toward the application of photosensitized oxidation of a sulfur mustard simulant.</abstract><cop>United States</cop><pmid>33371666</pmid><doi>10.1021/jacs.0c11370</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9655-9551</orcidid><orcidid>https://orcid.org/0000-0003-4926-1618</orcidid><orcidid>https://orcid.org/0000-0003-1471-8876</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-01, Vol.143 (1), p.399-408 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2473749226 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Self-Assembly%20of%20a%20Two-Step%20Fluorescence-Resonance%20Energy%20Transfer%20System%20with%20Improved%20Photosensitization%20Efficiency%20and%20Photooxidation%20Activity&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Jia,%20Pei-Pei&rft.date=2021-01-13&rft.volume=143&rft.issue=1&rft.spage=399&rft.epage=408&rft.pages=399-408&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c11370&rft_dat=%3Cproquest_cross%3E2473749226%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473749226&rft_id=info:pmid/33371666&rfr_iscdi=true |