Loading…

Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity

During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2021-01, Vol.143 (1), p.399-408
Main Authors: Jia, Pei-Pei, Xu, Lin, Hu, Yi-Xiong, Li, Wei-Jian, Wang, Xu-Qing, Ling, Qing-Hui, Shi, Xueliang, Yin, Guang-Qiang, Li, Xiaopeng, Sun, Haitao, Jiang, Yanrong, Yang, Hai-Bo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3
cites cdi_FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3
container_end_page 408
container_issue 1
container_start_page 399
container_title Journal of the American Chemical Society
container_volume 143
creator Jia, Pei-Pei
Xu, Lin
Hu, Yi-Xiong
Li, Wei-Jian
Wang, Xu-Qing
Ling, Qing-Hui
Shi, Xueliang
Yin, Guang-Qiang
Li, Xiaopeng
Sun, Haitao
Jiang, Yanrong
Yang, Hai-Bo
description During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems with precise control of the distances between locations and the numbers of fluorophores. Herein we present the successful fabrication of a two-step FRET system bearing specific numbers of anthracene, coumarin, and BODIPY moieties at precise distances and locations through an efficient and controllable orthogonal self-assembly approach based on metal-ligand coordination and host-guest interactions. Notably, the photosensitization efficiency and photooxidation activity of the two-step FRET system gradually increased with the number of energy transfer steps. For example, the two-step FRET system exhibited 1.5-fold higher O generation efficiency and 1.2-fold higher photooxidation activity than that of its corresponding one-step FRET system. This research not only provides the first successful example of the efficient preparation of multistep FRET systems through orthogonal self-assembly involving coordination and host-guest interactions but also pushes multistep FRET systems toward the application of photosensitized oxidation of a sulfur mustard simulant.
doi_str_mv 10.1021/jacs.0c11370
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473749226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473749226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3</originalsourceid><addsrcrecordid>eNo9kctOwzAURC0EgvLYsUZesiDgR-Iky6pqAQmpiJZ15DrX1CiJi-22hG_hYzFqYeWxfGZ0rwehS0puKWH07l0qf0sUpTwnB2hAM0aSjDJxiAaEEJbkheAn6NT793hNWUGP0QnnPKdCiAH6nrqwtG-2kw2eQaOToffQLpoeW40lnm9tMguwwpNmbR14BZ2C5AV8NESFxx24tx7Pney8BodnvQ_Q4q0JS_zYrpzdQI2flzZYD503wXzJYGyHx1obZWJYj2W3J-ynqXevQxXMxoT-HB1p2Xi42J9n6HUyno8ekqfp_eNo-JQoVtKQ8LKkuaRacw5ZWWZK1UVUuVSccc1yHSUvqcziF6UiLWgtyjTTaSb5QhSp5mfoepcbB_5Ygw9Va-KqTSM7sGtfsTSPzpIxEdGbHaqc9d6BrlbOtNL1FSXVbx_Vbx_Vvo-IX-2T14sW6n_4rwD-A2hkibc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473749226</pqid></control><display><type>article</type><title>Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Jia, Pei-Pei ; Xu, Lin ; Hu, Yi-Xiong ; Li, Wei-Jian ; Wang, Xu-Qing ; Ling, Qing-Hui ; Shi, Xueliang ; Yin, Guang-Qiang ; Li, Xiaopeng ; Sun, Haitao ; Jiang, Yanrong ; Yang, Hai-Bo</creator><creatorcontrib>Jia, Pei-Pei ; Xu, Lin ; Hu, Yi-Xiong ; Li, Wei-Jian ; Wang, Xu-Qing ; Ling, Qing-Hui ; Shi, Xueliang ; Yin, Guang-Qiang ; Li, Xiaopeng ; Sun, Haitao ; Jiang, Yanrong ; Yang, Hai-Bo</creatorcontrib><description>During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems with precise control of the distances between locations and the numbers of fluorophores. Herein we present the successful fabrication of a two-step FRET system bearing specific numbers of anthracene, coumarin, and BODIPY moieties at precise distances and locations through an efficient and controllable orthogonal self-assembly approach based on metal-ligand coordination and host-guest interactions. Notably, the photosensitization efficiency and photooxidation activity of the two-step FRET system gradually increased with the number of energy transfer steps. For example, the two-step FRET system exhibited 1.5-fold higher O generation efficiency and 1.2-fold higher photooxidation activity than that of its corresponding one-step FRET system. This research not only provides the first successful example of the efficient preparation of multistep FRET systems through orthogonal self-assembly involving coordination and host-guest interactions but also pushes multistep FRET systems toward the application of photosensitized oxidation of a sulfur mustard simulant.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c11370</identifier><identifier>PMID: 33371666</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the American Chemical Society, 2021-01, Vol.143 (1), p.399-408</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3</citedby><cites>FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3</cites><orcidid>0000-0001-9655-9551 ; 0000-0003-4926-1618 ; 0000-0003-1471-8876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33371666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Pei-Pei</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Hu, Yi-Xiong</creatorcontrib><creatorcontrib>Li, Wei-Jian</creatorcontrib><creatorcontrib>Wang, Xu-Qing</creatorcontrib><creatorcontrib>Ling, Qing-Hui</creatorcontrib><creatorcontrib>Shi, Xueliang</creatorcontrib><creatorcontrib>Yin, Guang-Qiang</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Sun, Haitao</creatorcontrib><creatorcontrib>Jiang, Yanrong</creatorcontrib><creatorcontrib>Yang, Hai-Bo</creatorcontrib><title>Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity</title><title>Journal of the American Chemical Society</title><addtitle>J Am Chem Soc</addtitle><description>During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems with precise control of the distances between locations and the numbers of fluorophores. Herein we present the successful fabrication of a two-step FRET system bearing specific numbers of anthracene, coumarin, and BODIPY moieties at precise distances and locations through an efficient and controllable orthogonal self-assembly approach based on metal-ligand coordination and host-guest interactions. Notably, the photosensitization efficiency and photooxidation activity of the two-step FRET system gradually increased with the number of energy transfer steps. For example, the two-step FRET system exhibited 1.5-fold higher O generation efficiency and 1.2-fold higher photooxidation activity than that of its corresponding one-step FRET system. This research not only provides the first successful example of the efficient preparation of multistep FRET systems through orthogonal self-assembly involving coordination and host-guest interactions but also pushes multistep FRET systems toward the application of photosensitized oxidation of a sulfur mustard simulant.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kctOwzAURC0EgvLYsUZesiDgR-Iky6pqAQmpiJZ15DrX1CiJi-22hG_hYzFqYeWxfGZ0rwehS0puKWH07l0qf0sUpTwnB2hAM0aSjDJxiAaEEJbkheAn6NT793hNWUGP0QnnPKdCiAH6nrqwtG-2kw2eQaOToffQLpoeW40lnm9tMguwwpNmbR14BZ2C5AV8NESFxx24tx7Pney8BodnvQ_Q4q0JS_zYrpzdQI2flzZYD503wXzJYGyHx1obZWJYj2W3J-ynqXevQxXMxoT-HB1p2Xi42J9n6HUyno8ekqfp_eNo-JQoVtKQ8LKkuaRacw5ZWWZK1UVUuVSccc1yHSUvqcziF6UiLWgtyjTTaSb5QhSp5mfoepcbB_5Ygw9Va-KqTSM7sGtfsTSPzpIxEdGbHaqc9d6BrlbOtNL1FSXVbx_Vbx_Vvo-IX-2T14sW6n_4rwD-A2hkibc</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Jia, Pei-Pei</creator><creator>Xu, Lin</creator><creator>Hu, Yi-Xiong</creator><creator>Li, Wei-Jian</creator><creator>Wang, Xu-Qing</creator><creator>Ling, Qing-Hui</creator><creator>Shi, Xueliang</creator><creator>Yin, Guang-Qiang</creator><creator>Li, Xiaopeng</creator><creator>Sun, Haitao</creator><creator>Jiang, Yanrong</creator><creator>Yang, Hai-Bo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9655-9551</orcidid><orcidid>https://orcid.org/0000-0003-4926-1618</orcidid><orcidid>https://orcid.org/0000-0003-1471-8876</orcidid></search><sort><creationdate>20210113</creationdate><title>Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity</title><author>Jia, Pei-Pei ; Xu, Lin ; Hu, Yi-Xiong ; Li, Wei-Jian ; Wang, Xu-Qing ; Ling, Qing-Hui ; Shi, Xueliang ; Yin, Guang-Qiang ; Li, Xiaopeng ; Sun, Haitao ; Jiang, Yanrong ; Yang, Hai-Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Pei-Pei</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Hu, Yi-Xiong</creatorcontrib><creatorcontrib>Li, Wei-Jian</creatorcontrib><creatorcontrib>Wang, Xu-Qing</creatorcontrib><creatorcontrib>Ling, Qing-Hui</creatorcontrib><creatorcontrib>Shi, Xueliang</creatorcontrib><creatorcontrib>Yin, Guang-Qiang</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Sun, Haitao</creatorcontrib><creatorcontrib>Jiang, Yanrong</creatorcontrib><creatorcontrib>Yang, Hai-Bo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Pei-Pei</au><au>Xu, Lin</au><au>Hu, Yi-Xiong</au><au>Li, Wei-Jian</au><au>Wang, Xu-Qing</au><au>Ling, Qing-Hui</au><au>Shi, Xueliang</au><au>Yin, Guang-Qiang</au><au>Li, Xiaopeng</au><au>Sun, Haitao</au><au>Jiang, Yanrong</au><au>Yang, Hai-Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J Am Chem Soc</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>143</volume><issue>1</issue><spage>399</spage><epage>408</epage><pages>399-408</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems with precise control of the distances between locations and the numbers of fluorophores. Herein we present the successful fabrication of a two-step FRET system bearing specific numbers of anthracene, coumarin, and BODIPY moieties at precise distances and locations through an efficient and controllable orthogonal self-assembly approach based on metal-ligand coordination and host-guest interactions. Notably, the photosensitization efficiency and photooxidation activity of the two-step FRET system gradually increased with the number of energy transfer steps. For example, the two-step FRET system exhibited 1.5-fold higher O generation efficiency and 1.2-fold higher photooxidation activity than that of its corresponding one-step FRET system. This research not only provides the first successful example of the efficient preparation of multistep FRET systems through orthogonal self-assembly involving coordination and host-guest interactions but also pushes multistep FRET systems toward the application of photosensitized oxidation of a sulfur mustard simulant.</abstract><cop>United States</cop><pmid>33371666</pmid><doi>10.1021/jacs.0c11370</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9655-9551</orcidid><orcidid>https://orcid.org/0000-0003-4926-1618</orcidid><orcidid>https://orcid.org/0000-0003-1471-8876</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-01, Vol.143 (1), p.399-408
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2473749226
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Self-Assembly%20of%20a%20Two-Step%20Fluorescence-Resonance%20Energy%20Transfer%20System%20with%20Improved%20Photosensitization%20Efficiency%20and%20Photooxidation%20Activity&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Jia,%20Pei-Pei&rft.date=2021-01-13&rft.volume=143&rft.issue=1&rft.spage=399&rft.epage=408&rft.pages=399-408&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c11370&rft_dat=%3Cproquest_cross%3E2473749226%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-39917a1ff33e5995ccd83e57ac323f27f57a391a513746481d6945f45a3b684f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473749226&rft_id=info:pmid/33371666&rfr_iscdi=true