Loading…

Generation of high-energy, Gaussian laser pulses with tunable duration from 100 picoseconds to 1 millisecond

In this work, a variable-pulse-oscillator is developed and coupled with a burst-mode amplifier for generation of high-energy laser pulses with width of 100 ps to 1 ms and near-Gaussian temporal pulse shape. Pulse energy as high as 600 mJ is demonstrated at 1064 nm, with a super-Gaussian spatial prof...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2020-12, Vol.28 (25), p.37811-37826
Main Authors: Miller, Joseph D, Slipchenko, Mikhail N, Felver, Josef, Roy, Sukesh
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, a variable-pulse-oscillator is developed and coupled with a burst-mode amplifier for generation of high-energy laser pulses with width of 100 ps to 1 ms and near-Gaussian temporal pulse shape. Pulse energy as high as 600 mJ is demonstrated at 1064 nm, with a super-Gaussian spatial profile and beam quality as good as 1.6 times the diffraction limit. A time-dependent pulse amplification model is developed and is in general agreement with experimentally measured values of output pulse energy and temporal pulse shape of the amplified pulses. Key performance parameters (pulse energy, temporal pulse shape, and spatial beam profile and quality) are analyzed as a function of pulse width across seven orders of magnitude. Additionally, the model is used to elucidate deviations between the simulated and experimental data, showing that the relationship between pulse width and output pulse energy is dominated by the variable-pulse-width oscillator performance, not the burst-mode amplifier.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.409546