Loading…
Determination of Crystal-Field Splitting Induced by Thermal Oxidation of Titanium
The electronic structure of transition-metal oxides is a key component responsible for material's optical and chemical properties. Specifically for metal-oxide structures, the crystal-field interaction determines the shape, strength, and occupancy of electronic orbitals. Consequently, the cryst...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2021-01, Vol.125 (1), p.50-56 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electronic structure of transition-metal oxides is a key component responsible for material's optical and chemical properties. Specifically for metal-oxide structures, the crystal-field interaction determines the shape, strength, and occupancy of electronic orbitals. Consequently, the crystal-field splitting and resulting unoccupied state populations can be foreseen as modeling factors of the photochemical activity. Herein, we study the formation of crystal-field effects during thermal oxidation of titanium in an ambient atmosphere and range of temperatures. The X-ray absorption spectroscopy is employed for quantitative analysis of average t
-e
crystal-field splitting (Δoct) and relative t
/e
bands occupancy. The obtained result shows that Δoct changes as a function of temperature from 1.97 eV for a passive oxide layer created on a Ti metal surface at room temperature to 2.41 eV at 600 °C when the material changes into the TiO
rutile phase. On the basis of XAS data analysis, we show that the Δoct values determined from L
and L
absorption edges are equal, indicating that the 2p
and 2p
core holes screen the t
and e
electronic states in a similar manner. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.0c07955 |