Loading…
Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel
The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-algi...
Saved in:
Published in: | ACS applied materials & interfaces 2021-01, Vol.13 (2), p.2997-3010 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733 |
---|---|
cites | cdi_FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733 |
container_end_page | 3010 |
container_issue | 2 |
container_start_page | 2997 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Forgács, Attila Papp, Vanda Paul, Geo Marchese, Leonardo Len, Adél Dudás, Zoltán Fábián, István Gurikov, Pavel Kalmár, József |
description | The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments. |
doi_str_mv | 10.1021/acsami.0c17012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475530534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475530534</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwMqKMCCnFzyQeqwhopSIGYGKwbhy7pMqj2PHQf0-qFMTC5GvpnE_3fghdEzwnmJJ70B6aao41STGhJ2hKJOdxRgU9_Z05n6AL77cYJ4xicY4mjHFMMimm6OPZ6E9oK99EnY2W-9JBX3VtBG3557dqy6BNGb32Lug-OKijfLA2xh-sHGpdhSZa1Juqhd5EC-O6jakv0ZmF2pur4ztD748Pb_kyXr88rfLFOgYmkz62JeACc5xJnMhCsiIZ1gQQlhdgRcZBFikpWWJlQgkUHFKbAeMJ5YIIkjI2Q7dj7s51X8H4XjWV16auoTVd8IryVAiGBeMDOh9R7TrvnbFq56oG3F4RrA6FqrFQdSx0EG6O2aFoTPmL_zQ4AHcjMIhq2wXXDqf-l_YN9h9_iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475530534</pqid></control><display><type>article</type><title>Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Forgács, Attila ; Papp, Vanda ; Paul, Geo ; Marchese, Leonardo ; Len, Adél ; Dudás, Zoltán ; Fábián, István ; Gurikov, Pavel ; Kalmár, József</creator><creatorcontrib>Forgács, Attila ; Papp, Vanda ; Paul, Geo ; Marchese, Leonardo ; Len, Adél ; Dudás, Zoltán ; Fábián, István ; Gurikov, Pavel ; Kalmár, József</creatorcontrib><description>The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c17012</identifier><identifier>PMID: 33401895</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials & interfaces, 2021-01, Vol.13 (2), p.2997-3010</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733</citedby><cites>FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733</cites><orcidid>0000-0002-4467-2912 ; 0000-0002-2422-6106 ; 0000-0002-0944-0016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33401895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Forgács, Attila</creatorcontrib><creatorcontrib>Papp, Vanda</creatorcontrib><creatorcontrib>Paul, Geo</creatorcontrib><creatorcontrib>Marchese, Leonardo</creatorcontrib><creatorcontrib>Len, Adél</creatorcontrib><creatorcontrib>Dudás, Zoltán</creatorcontrib><creatorcontrib>Fábián, István</creatorcontrib><creatorcontrib>Gurikov, Pavel</creatorcontrib><creatorcontrib>Kalmár, József</creatorcontrib><title>Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwMqKMCCnFzyQeqwhopSIGYGKwbhy7pMqj2PHQf0-qFMTC5GvpnE_3fghdEzwnmJJ70B6aao41STGhJ2hKJOdxRgU9_Z05n6AL77cYJ4xicY4mjHFMMimm6OPZ6E9oK99EnY2W-9JBX3VtBG3557dqy6BNGb32Lug-OKijfLA2xh-sHGpdhSZa1Juqhd5EC-O6jakv0ZmF2pur4ztD748Pb_kyXr88rfLFOgYmkz62JeACc5xJnMhCsiIZ1gQQlhdgRcZBFikpWWJlQgkUHFKbAeMJ5YIIkjI2Q7dj7s51X8H4XjWV16auoTVd8IryVAiGBeMDOh9R7TrvnbFq56oG3F4RrA6FqrFQdSx0EG6O2aFoTPmL_zQ4AHcjMIhq2wXXDqf-l_YN9h9_iQ</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Forgács, Attila</creator><creator>Papp, Vanda</creator><creator>Paul, Geo</creator><creator>Marchese, Leonardo</creator><creator>Len, Adél</creator><creator>Dudás, Zoltán</creator><creator>Fábián, István</creator><creator>Gurikov, Pavel</creator><creator>Kalmár, József</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4467-2912</orcidid><orcidid>https://orcid.org/0000-0002-2422-6106</orcidid><orcidid>https://orcid.org/0000-0002-0944-0016</orcidid></search><sort><creationdate>20210120</creationdate><title>Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel</title><author>Forgács, Attila ; Papp, Vanda ; Paul, Geo ; Marchese, Leonardo ; Len, Adél ; Dudás, Zoltán ; Fábián, István ; Gurikov, Pavel ; Kalmár, József</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forgács, Attila</creatorcontrib><creatorcontrib>Papp, Vanda</creatorcontrib><creatorcontrib>Paul, Geo</creatorcontrib><creatorcontrib>Marchese, Leonardo</creatorcontrib><creatorcontrib>Len, Adél</creatorcontrib><creatorcontrib>Dudás, Zoltán</creatorcontrib><creatorcontrib>Fábián, István</creatorcontrib><creatorcontrib>Gurikov, Pavel</creatorcontrib><creatorcontrib>Kalmár, József</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forgács, Attila</au><au>Papp, Vanda</au><au>Paul, Geo</au><au>Marchese, Leonardo</au><au>Len, Adél</au><au>Dudás, Zoltán</au><au>Fábián, István</au><au>Gurikov, Pavel</au><au>Kalmár, József</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-01-20</date><risdate>2021</risdate><volume>13</volume><issue>2</issue><spage>2997</spage><epage>3010</epage><pages>2997-3010</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33401895</pmid><doi>10.1021/acsami.0c17012</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4467-2912</orcidid><orcidid>https://orcid.org/0000-0002-2422-6106</orcidid><orcidid>https://orcid.org/0000-0002-0944-0016</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-01, Vol.13 (2), p.2997-3010 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2475530534 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Functional Nanostructured Materials (including low-D carbon) |
title | Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Hydration%20and%20Hydration%20Induced%20Structural%20Changes%20of%20Calcium%20Alginate%20Aerogel&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Forga%CC%81cs,%20Attila&rft.date=2021-01-20&rft.volume=13&rft.issue=2&rft.spage=2997&rft.epage=3010&rft.pages=2997-3010&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c17012&rft_dat=%3Cproquest_cross%3E2475530534%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475530534&rft_id=info:pmid/33401895&rfr_iscdi=true |