Loading…

Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel

The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-algi...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-01, Vol.13 (2), p.2997-3010
Main Authors: Forgács, Attila, Papp, Vanda, Paul, Geo, Marchese, Leonardo, Len, Adél, Dudás, Zoltán, Fábián, István, Gurikov, Pavel, Kalmár, József
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733
cites cdi_FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733
container_end_page 3010
container_issue 2
container_start_page 2997
container_title ACS applied materials & interfaces
container_volume 13
creator Forgács, Attila
Papp, Vanda
Paul, Geo
Marchese, Leonardo
Len, Adél
Dudás, Zoltán
Fábián, István
Gurikov, Pavel
Kalmár, József
description The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.
doi_str_mv 10.1021/acsami.0c17012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475530534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475530534</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwMqKMCCnFzyQeqwhopSIGYGKwbhy7pMqj2PHQf0-qFMTC5GvpnE_3fghdEzwnmJJ70B6aao41STGhJ2hKJOdxRgU9_Z05n6AL77cYJ4xicY4mjHFMMimm6OPZ6E9oK99EnY2W-9JBX3VtBG3557dqy6BNGb32Lug-OKijfLA2xh-sHGpdhSZa1Juqhd5EC-O6jakv0ZmF2pur4ztD748Pb_kyXr88rfLFOgYmkz62JeACc5xJnMhCsiIZ1gQQlhdgRcZBFikpWWJlQgkUHFKbAeMJ5YIIkjI2Q7dj7s51X8H4XjWV16auoTVd8IryVAiGBeMDOh9R7TrvnbFq56oG3F4RrA6FqrFQdSx0EG6O2aFoTPmL_zQ4AHcjMIhq2wXXDqf-l_YN9h9_iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475530534</pqid></control><display><type>article</type><title>Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Forgács, Attila ; Papp, Vanda ; Paul, Geo ; Marchese, Leonardo ; Len, Adél ; Dudás, Zoltán ; Fábián, István ; Gurikov, Pavel ; Kalmár, József</creator><creatorcontrib>Forgács, Attila ; Papp, Vanda ; Paul, Geo ; Marchese, Leonardo ; Len, Adél ; Dudás, Zoltán ; Fábián, István ; Gurikov, Pavel ; Kalmár, József</creatorcontrib><description>The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c17012</identifier><identifier>PMID: 33401895</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2021-01, Vol.13 (2), p.2997-3010</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733</citedby><cites>FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733</cites><orcidid>0000-0002-4467-2912 ; 0000-0002-2422-6106 ; 0000-0002-0944-0016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33401895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Forgács, Attila</creatorcontrib><creatorcontrib>Papp, Vanda</creatorcontrib><creatorcontrib>Paul, Geo</creatorcontrib><creatorcontrib>Marchese, Leonardo</creatorcontrib><creatorcontrib>Len, Adél</creatorcontrib><creatorcontrib>Dudás, Zoltán</creatorcontrib><creatorcontrib>Fábián, István</creatorcontrib><creatorcontrib>Gurikov, Pavel</creatorcontrib><creatorcontrib>Kalmár, József</creatorcontrib><title>Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwMqKMCCnFzyQeqwhopSIGYGKwbhy7pMqj2PHQf0-qFMTC5GvpnE_3fghdEzwnmJJ70B6aao41STGhJ2hKJOdxRgU9_Z05n6AL77cYJ4xicY4mjHFMMimm6OPZ6E9oK99EnY2W-9JBX3VtBG3557dqy6BNGb32Lug-OKijfLA2xh-sHGpdhSZa1Juqhd5EC-O6jakv0ZmF2pur4ztD748Pb_kyXr88rfLFOgYmkz62JeACc5xJnMhCsiIZ1gQQlhdgRcZBFikpWWJlQgkUHFKbAeMJ5YIIkjI2Q7dj7s51X8H4XjWV16auoTVd8IryVAiGBeMDOh9R7TrvnbFq56oG3F4RrA6FqrFQdSx0EG6O2aFoTPmL_zQ4AHcjMIhq2wXXDqf-l_YN9h9_iQ</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Forgács, Attila</creator><creator>Papp, Vanda</creator><creator>Paul, Geo</creator><creator>Marchese, Leonardo</creator><creator>Len, Adél</creator><creator>Dudás, Zoltán</creator><creator>Fábián, István</creator><creator>Gurikov, Pavel</creator><creator>Kalmár, József</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4467-2912</orcidid><orcidid>https://orcid.org/0000-0002-2422-6106</orcidid><orcidid>https://orcid.org/0000-0002-0944-0016</orcidid></search><sort><creationdate>20210120</creationdate><title>Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel</title><author>Forgács, Attila ; Papp, Vanda ; Paul, Geo ; Marchese, Leonardo ; Len, Adél ; Dudás, Zoltán ; Fábián, István ; Gurikov, Pavel ; Kalmár, József</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forgács, Attila</creatorcontrib><creatorcontrib>Papp, Vanda</creatorcontrib><creatorcontrib>Paul, Geo</creatorcontrib><creatorcontrib>Marchese, Leonardo</creatorcontrib><creatorcontrib>Len, Adél</creatorcontrib><creatorcontrib>Dudás, Zoltán</creatorcontrib><creatorcontrib>Fábián, István</creatorcontrib><creatorcontrib>Gurikov, Pavel</creatorcontrib><creatorcontrib>Kalmár, József</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forgács, Attila</au><au>Papp, Vanda</au><au>Paul, Geo</au><au>Marchese, Leonardo</au><au>Len, Adél</au><au>Dudás, Zoltán</au><au>Fábián, István</au><au>Gurikov, Pavel</au><au>Kalmár, József</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-01-20</date><risdate>2021</risdate><volume>13</volume><issue>2</issue><spage>2997</spage><epage>3010</epage><pages>2997-3010</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The most relevant properties of polysaccharide aerogels in practical applications are determined by their microstructures. Hydration has a dominant role in altering the microstructures of these hydrophilic porous materials. To understand the hydration induced structural changes of monolithic Ca-alginate aerogel, produced by drying fully cross-linked gels with supercritical CO2, the aerogel was gradually hydrated and characterized at different states of hydration by small-angle neutron scattering (SANS), liquid-state nuclear magnetic resonance (NMR) spectroscopy, and magic angle spinning (MAS) NMR spectroscopy. First, the incorporation of structural water and the formation of an extensive hydration sphere mobilize the Ca-alginate macromolecules and induce the rearrangement of the dry-state tertiary and quaternary structures. The primary fibrils of the original aerogel backbone form hydrated fibers and fascicles, resulting in the significant increase of pore size, the smoothing of the nanostructured surface, and the increase of the fractal dimension of the matrix. Because of the formation of these new superstructures in the hydrated backbone, the stiffness and the compressive strength of the aerogel significantly increase compared to its dry-state properties. Further elevation of the water content of the aerogel results in a critical hydration state. The Ca-alginate fibers of the backbone disintegrate into well-hydrated chains, which eventually form a quasi-homogeneous hydrogel-like network. Consequently, the porous structure collapses and the well-defined solid backbone ceases to exist. Even in this hydrogel-like state, the macroscopic integrity of the Ca-alginate monolith is intact. The postulated mechanism accounts for the modification of the macroscopic properties of Ca-alginate aerogel in relation to both humid and aqueous environments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33401895</pmid><doi>10.1021/acsami.0c17012</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4467-2912</orcidid><orcidid>https://orcid.org/0000-0002-2422-6106</orcidid><orcidid>https://orcid.org/0000-0002-0944-0016</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-01, Vol.13 (2), p.2997-3010
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2475530534
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Functional Nanostructured Materials (including low-D carbon)
title Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Hydration%20and%20Hydration%20Induced%20Structural%20Changes%20of%20Calcium%20Alginate%20Aerogel&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Forga%CC%81cs,%20Attila&rft.date=2021-01-20&rft.volume=13&rft.issue=2&rft.spage=2997&rft.epage=3010&rft.pages=2997-3010&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c17012&rft_dat=%3Cproquest_cross%3E2475530534%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a396t-fda0b04089069b93b6632aa5f4baf584a9b71d36f9621ab4a7f8a346245151733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475530534&rft_id=info:pmid/33401895&rfr_iscdi=true