Loading…

Pharmacological characterization of a structurally new class of antibacterial compound, triphenyl-phosphonium conjugated diarylheptanoid: Antibacterial activity and molecular mechanism

Many pathogenic species of bacteria are showing increasing drug resistance against clinically used antibiotics. Molecules structurally distant from known antibiotics and possessing membrane targeting bactericidal activities are more likely to display activity against drug-resistant pathogens. Mitocu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biosciences 2020-12, Vol.45 (1), Article 147
Main Authors: Kumari, Shweta, Jayakumar, Sundarraj, Bihani, Subhash C, Shetake, Neena, Naidu, Raji, Kutala, Vijay K, Sarma, Haladhar D, Gupta, Gagan D, Sandur, Santosh K, Kumar, Vinay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many pathogenic species of bacteria are showing increasing drug resistance against clinically used antibiotics. Molecules structurally distant from known antibiotics and possessing membrane targeting bactericidal activities are more likely to display activity against drug-resistant pathogens. Mitocurcumin (MitoC) is one of such compounds, synthesized by triphenyl-phosphonium conjugation with curcumin, and has been shown recently from our laboratory to have broad-spectrum bactericidal activity (Kumari et al. 2019 Free Radic. Biol. Med. 143 140–145). Here, we further demonstrate the antibacterial properties of MitoC against resistant strains and also its mechanism of action. It displays efficient bactericidal activity against multidrug-resistant Staphylococcus aureus and Streptococcus pneumoniae (MIC values in the 1.5–12.5 µM range), and coagulase-negative Staphylococci do not show resistance development against MitoC. Liposome based studies and MIC values against TolC deletion mutant (Δ tolC ; outer membrane protein) of E. coli suggest extensive membrane damage to be the primary mechanism of bactericidal activity. MitoC did not exhibit toxicity in BALB/c mice with an oral administration of 250 mg/kg body weight and was found to be totally safe without any significant effect on haematological, biochemical parameters and inflammatory responses. Its rapid bactericidal action as assessed by in vitro time-kill assay against B. subtilis , compared to ciprofloxacin, and long half-life in rodent serum, suggest that MitoC could be an excellent lead-molecule against drug-resistant pathogens. The highlights of the study are that mitocurcumin belongs to a structurally new class of bactericidal compounds. It displays activity against MDR strains of pathogenic bacteria and challenging MRSA. Liposome-based studies confirm the membrane damaging property of the molecule. Mitocurcumin does not show resistance development even after 27 bacterial generations.
ISSN:0250-5991
0973-7138
DOI:10.1007/s12038-020-00113-7