Loading…
Perceptual Quality Assessment of Omnidirectional Images as Moving Camera Videos
Omnidirectional images (also referred to as static 360^{\circ } ∘ panoramas) impose viewing conditions much different from those of regular 2D images. How do humans perceive image distortions in immersive virtual reality (VR) environments is an important problem which receives less attention. We ar...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2022-08, Vol.28 (8), p.3022-3034 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Omnidirectional images (also referred to as static 360^{\circ } ∘ panoramas) impose viewing conditions much different from those of regular 2D images. How do humans perceive image distortions in immersive virtual reality (VR) environments is an important problem which receives less attention. We argue that, apart from the distorted panorama itself, two types of VR viewing conditions are crucial in determining the viewing behaviors of users and the perceived quality of the panorama: the starting point and the exploration time. We first carry out a psychophysical experiment to investigate the interplay among the VR viewing conditions, the user viewing behaviors, and the perceived quality of 360^{\circ } ∘ images. Then, we provide a thorough analysis of the collected human data, leading to several interesting findings. Moreover, we propose a computational framework for objective quality assessment of 360^{\circ } ∘ images, embodying viewing conditions and behaviors in a delightful way. Specifically, we first transform an omnidirectional image to several video representations using different user viewing behaviors under different viewing conditions. We then leverage advanced 2D full-reference video quality models to compute the perceived quality. We construct a set of specific quality measures within the proposed framework, and demonstrate their promises on three VR quality databases. |
---|---|
ISSN: | 1077-2626 1941-0506 |
DOI: | 10.1109/TVCG.2021.3050888 |