Loading…
Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning
Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2017 do Instituto Politécnico de Lisboa. Código de referência IPL/2017/DrugsPlatf/ISEL The low rate of discovery and rapid spread of resistant pathogens have mad...
Saved in:
Published in: | Applied microbiology and biotechnology 2021-02, Vol.105 (3), p.1269-1286 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013 |
container_end_page | 1286 |
container_issue | 3 |
container_start_page | 1269 |
container_title | Applied microbiology and biotechnology |
container_volume | 105 |
creator | Ribeiro da Cunha, Bernardo P. Fonseca, Luis Calado, Cecília |
description | Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2017 do Instituto Politécnico de Lisboa. Código de referência IPL/2017/DrugsPlatf/ISEL
The low rate of discovery and rapid spread of resistant pathogens have made antibiotic discovery a worldwide priority. In cell-based screening, the mechanism of action (MOA) is identified after antimicrobial activity. This increases rediscovery, impairs low potency candidate detection, and does not guide lead optimization. In this study, high-throughput Fourier-transform infrared (FTIR) spectroscopy was used to discriminate the MOA of 14 antibiotics at pathway, class, and individual antibiotic level. For that, the optimal combinations and parametrizations of spectral preprocessing were selected with cross-validated partial least squares discriminant analysis, to which various machine learning algorithms were applied. This coherently resulted in very good accuracies, independently of the algorithms, and at all levels of MOA. Particularly, an ensemble of subspace discriminants predicted the known pathway (98.6%), antibiotic classes (100%), and individual antibiotics (97.8%) with exceptional accuracy, and similar results were obtained for simulated novel MOA. Even at very low concentrations (1 mu g/mL) and growth inhibition (15%), over 70% pathway and class accuracy was achieved, suggesting FTIR spectroscopy can probe the grey chemical matter. Prediction of inhibitory effect was also examined, for which a squared exponential Gaussian process regression yielded a root mean square error of 0.33 and a R-2 of 0.92, indicating that metabolic alterations leading to growth inhibition are intrinsically reflected on FTIR spectra beyond cell density. |
doi_str_mv | 10.1007/s00253-021-11102-7 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478031691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651274379</galeid><sourcerecordid>A651274379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013</originalsourceid><addsrcrecordid>eNp9kt-K1TAQxoso7nH1BbyQgF6sF13zp03ay2Xx6MKCoOt1SNNpm6VNapKunKfxVU1PVxdFJBeBmd_3MTN8WfaS4HOCsXgXMKYlyzElOSEE01w8ynakYDTHnBSPsx0mosxFWVcn2bMQbjEmtOL8aXbCWFEwzsQu-_HFTMsYlQW3BATjok2ronEWuQ4pG01jXDQaTaAHZU2YjnV9JJRt0ewiWH1A300c0GD6IY-Dd0s_zEtEe7d4Az6PXtnQOT8hYzuvPLTobH9z9fktCjPo6F3Qbj4c_SalB2MBjaC8NbZ_nj3p1Bjgxf1_mn3dv7-5_Jhff_pwdXlxnesSVzGnTVWxFpdYNDUvea2VKGhZN1ACEVQJIF3VkbaoukbUChgILhi0TZ1aQmDCTrOzzXf27tsCIcrJBA3juF1G0kJUmBFer-jrv9DbtKdN0yWqoozXQrAHqlcjyLS3S1fQq6m84CWhomCiTtT5P6j0WpiMdhY6k-p_COgm0OlqwUMnZ28m5Q-SYLmmQm6pkCkV8pgKKZLo1f3ESzNB-1vyKwYJYBsQUsv24B9W-q_tm03ltVKz9HBnQlSrpMBYrmAamrKfhQPO2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482369773</pqid></control><display><type>article</type><title>Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Ribeiro da Cunha, Bernardo ; P. Fonseca, Luis ; Calado, Cecília</creator><creatorcontrib>Ribeiro da Cunha, Bernardo ; P. Fonseca, Luis ; Calado, Cecília</creatorcontrib><description>Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2017 do Instituto Politécnico de Lisboa. Código de referência IPL/2017/DrugsPlatf/ISEL
The low rate of discovery and rapid spread of resistant pathogens have made antibiotic discovery a worldwide priority. In cell-based screening, the mechanism of action (MOA) is identified after antimicrobial activity. This increases rediscovery, impairs low potency candidate detection, and does not guide lead optimization. In this study, high-throughput Fourier-transform infrared (FTIR) spectroscopy was used to discriminate the MOA of 14 antibiotics at pathway, class, and individual antibiotic level. For that, the optimal combinations and parametrizations of spectral preprocessing were selected with cross-validated partial least squares discriminant analysis, to which various machine learning algorithms were applied. This coherently resulted in very good accuracies, independently of the algorithms, and at all levels of MOA. Particularly, an ensemble of subspace discriminants predicted the known pathway (98.6%), antibiotic classes (100%), and individual antibiotics (97.8%) with exceptional accuracy, and similar results were obtained for simulated novel MOA. Even at very low concentrations (1 mu g/mL) and growth inhibition (15%), over 70% pathway and class accuracy was achieved, suggesting FTIR spectroscopy can probe the grey chemical matter. Prediction of inhibitory effect was also examined, for which a squared exponential Gaussian process regression yielded a root mean square error of 0.33 and a R-2 of 0.92, indicating that metabolic alterations leading to growth inhibition are intrinsically reflected on FTIR spectra beyond cell density.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-021-11102-7</identifier><identifier>PMID: 33443637</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Algorithms ; Anti-Bacterial Agents - pharmacology ; Antibiotic discovery ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial activity ; Antimicrobial potency ; Biomedical and Life Sciences ; Biotechnology ; Cell density ; Data analysis ; Discriminant analysis ; Fourier transform infrared spectroscopy ; Fourier transforms ; Gaussian process ; Infrared spectroscopy ; Learning algorithms ; Least-Squares Analysis ; Life Sciences ; Low concentrations ; Machine Learning ; Mechanism of action (MOA) ; Methods and Protocols ; Microbial Genetics and Genomics ; Microbiology ; Observations ; Optimization ; Physiological aspects ; Regression analysis ; Spectroscopy ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis</subject><ispartof>Applied microbiology and biotechnology, 2021-02, Vol.105 (3), p.1269-1286</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013</citedby><cites>FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013</cites><orcidid>0000-0001-8429-6977 ; 0000-0002-5264-9755 ; 0000-0002-0303-9416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2482369773/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2482369773?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344,74644</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33443637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ribeiro da Cunha, Bernardo</creatorcontrib><creatorcontrib>P. Fonseca, Luis</creatorcontrib><creatorcontrib>Calado, Cecília</creatorcontrib><title>Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2017 do Instituto Politécnico de Lisboa. Código de referência IPL/2017/DrugsPlatf/ISEL
The low rate of discovery and rapid spread of resistant pathogens have made antibiotic discovery a worldwide priority. In cell-based screening, the mechanism of action (MOA) is identified after antimicrobial activity. This increases rediscovery, impairs low potency candidate detection, and does not guide lead optimization. In this study, high-throughput Fourier-transform infrared (FTIR) spectroscopy was used to discriminate the MOA of 14 antibiotics at pathway, class, and individual antibiotic level. For that, the optimal combinations and parametrizations of spectral preprocessing were selected with cross-validated partial least squares discriminant analysis, to which various machine learning algorithms were applied. This coherently resulted in very good accuracies, independently of the algorithms, and at all levels of MOA. Particularly, an ensemble of subspace discriminants predicted the known pathway (98.6%), antibiotic classes (100%), and individual antibiotics (97.8%) with exceptional accuracy, and similar results were obtained for simulated novel MOA. Even at very low concentrations (1 mu g/mL) and growth inhibition (15%), over 70% pathway and class accuracy was achieved, suggesting FTIR spectroscopy can probe the grey chemical matter. Prediction of inhibitory effect was also examined, for which a squared exponential Gaussian process regression yielded a root mean square error of 0.33 and a R-2 of 0.92, indicating that metabolic alterations leading to growth inhibition are intrinsically reflected on FTIR spectra beyond cell density.</description><subject>Algorithms</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic discovery</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial potency</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell density</subject><subject>Data analysis</subject><subject>Discriminant analysis</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Gaussian process</subject><subject>Infrared spectroscopy</subject><subject>Learning algorithms</subject><subject>Least-Squares Analysis</subject><subject>Life Sciences</subject><subject>Low concentrations</subject><subject>Machine Learning</subject><subject>Mechanism of action (MOA)</subject><subject>Methods and Protocols</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Observations</subject><subject>Optimization</subject><subject>Physiological aspects</subject><subject>Regression analysis</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kt-K1TAQxoso7nH1BbyQgF6sF13zp03ay2Xx6MKCoOt1SNNpm6VNapKunKfxVU1PVxdFJBeBmd_3MTN8WfaS4HOCsXgXMKYlyzElOSEE01w8ynakYDTHnBSPsx0mosxFWVcn2bMQbjEmtOL8aXbCWFEwzsQu-_HFTMsYlQW3BATjok2ronEWuQ4pG01jXDQaTaAHZU2YjnV9JJRt0ewiWH1A300c0GD6IY-Dd0s_zEtEe7d4Az6PXtnQOT8hYzuvPLTobH9z9fktCjPo6F3Qbj4c_SalB2MBjaC8NbZ_nj3p1Bjgxf1_mn3dv7-5_Jhff_pwdXlxnesSVzGnTVWxFpdYNDUvea2VKGhZN1ACEVQJIF3VkbaoukbUChgILhi0TZ1aQmDCTrOzzXf27tsCIcrJBA3juF1G0kJUmBFer-jrv9DbtKdN0yWqoozXQrAHqlcjyLS3S1fQq6m84CWhomCiTtT5P6j0WpiMdhY6k-p_COgm0OlqwUMnZ28m5Q-SYLmmQm6pkCkV8pgKKZLo1f3ESzNB-1vyKwYJYBsQUsv24B9W-q_tm03ltVKz9HBnQlSrpMBYrmAamrKfhQPO2A</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ribeiro da Cunha, Bernardo</creator><creator>P. Fonseca, Luis</creator><creator>Calado, Cecília</creator><general>Springer</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>RCLKO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8429-6977</orcidid><orcidid>https://orcid.org/0000-0002-5264-9755</orcidid><orcidid>https://orcid.org/0000-0002-0303-9416</orcidid></search><sort><creationdate>20210201</creationdate><title>Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning</title><author>Ribeiro da Cunha, Bernardo ; P. Fonseca, Luis ; Calado, Cecília</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic discovery</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial potency</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell density</topic><topic>Data analysis</topic><topic>Discriminant analysis</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Gaussian process</topic><topic>Infrared spectroscopy</topic><topic>Learning algorithms</topic><topic>Least-Squares Analysis</topic><topic>Life Sciences</topic><topic>Low concentrations</topic><topic>Machine Learning</topic><topic>Mechanism of action (MOA)</topic><topic>Methods and Protocols</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Observations</topic><topic>Optimization</topic><topic>Physiological aspects</topic><topic>Regression analysis</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro da Cunha, Bernardo</creatorcontrib><creatorcontrib>P. Fonseca, Luis</creatorcontrib><creatorcontrib>Calado, Cecília</creatorcontrib><collection>RCAAP open access repository</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro da Cunha, Bernardo</au><au>P. Fonseca, Luis</au><au>Calado, Cecília</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>105</volume><issue>3</issue><spage>1269</spage><epage>1286</epage><pages>1269-1286</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2017 do Instituto Politécnico de Lisboa. Código de referência IPL/2017/DrugsPlatf/ISEL
The low rate of discovery and rapid spread of resistant pathogens have made antibiotic discovery a worldwide priority. In cell-based screening, the mechanism of action (MOA) is identified after antimicrobial activity. This increases rediscovery, impairs low potency candidate detection, and does not guide lead optimization. In this study, high-throughput Fourier-transform infrared (FTIR) spectroscopy was used to discriminate the MOA of 14 antibiotics at pathway, class, and individual antibiotic level. For that, the optimal combinations and parametrizations of spectral preprocessing were selected with cross-validated partial least squares discriminant analysis, to which various machine learning algorithms were applied. This coherently resulted in very good accuracies, independently of the algorithms, and at all levels of MOA. Particularly, an ensemble of subspace discriminants predicted the known pathway (98.6%), antibiotic classes (100%), and individual antibiotics (97.8%) with exceptional accuracy, and similar results were obtained for simulated novel MOA. Even at very low concentrations (1 mu g/mL) and growth inhibition (15%), over 70% pathway and class accuracy was achieved, suggesting FTIR spectroscopy can probe the grey chemical matter. Prediction of inhibitory effect was also examined, for which a squared exponential Gaussian process regression yielded a root mean square error of 0.33 and a R-2 of 0.92, indicating that metabolic alterations leading to growth inhibition are intrinsically reflected on FTIR spectra beyond cell density.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><pmid>33443637</pmid><doi>10.1007/s00253-021-11102-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8429-6977</orcidid><orcidid>https://orcid.org/0000-0002-5264-9755</orcidid><orcidid>https://orcid.org/0000-0002-0303-9416</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2021-02, Vol.105 (3), p.1269-1286 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2478031691 |
source | ABI/INFORM Global; Springer Nature |
subjects | Algorithms Anti-Bacterial Agents - pharmacology Antibiotic discovery Antibiotics Antiinfectives and antibacterials Antimicrobial activity Antimicrobial potency Biomedical and Life Sciences Biotechnology Cell density Data analysis Discriminant analysis Fourier transform infrared spectroscopy Fourier transforms Gaussian process Infrared spectroscopy Learning algorithms Least-Squares Analysis Life Sciences Low concentrations Machine Learning Mechanism of action (MOA) Methods and Protocols Microbial Genetics and Genomics Microbiology Observations Optimization Physiological aspects Regression analysis Spectroscopy Spectroscopy, Fourier Transform Infrared Spectrum analysis |
title | Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20elucidation%20of%20antibiotic%20mechanism%20of%20action%20and%20potency%20with%20high-throughput%20Fourier-transform%20infrared%20(FTIR)%20spectroscopy%20and%20machine%20learning&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Ribeiro%20da%20Cunha,%20Bernardo&rft.date=2021-02-01&rft.volume=105&rft.issue=3&rft.spage=1269&rft.epage=1286&rft.pages=1269-1286&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-021-11102-7&rft_dat=%3Cgale_proqu%3EA651274379%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2482369773&rft_id=info:pmid/33443637&rft_galeid=A651274379&rfr_iscdi=true |