Loading…

Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning

Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2017 do Instituto Politécnico de Lisboa. Código de referência IPL/2017/DrugsPlatf/ISEL The low rate of discovery and rapid spread of resistant pathogens have mad...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2021-02, Vol.105 (3), p.1269-1286
Main Authors: Ribeiro da Cunha, Bernardo, P. Fonseca, Luis, Calado, Cecília
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013
cites cdi_FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013
container_end_page 1286
container_issue 3
container_start_page 1269
container_title Applied microbiology and biotechnology
container_volume 105
creator Ribeiro da Cunha, Bernardo
P. Fonseca, Luis
Calado, Cecília
description Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2017 do Instituto Politécnico de Lisboa. Código de referência IPL/2017/DrugsPlatf/ISEL The low rate of discovery and rapid spread of resistant pathogens have made antibiotic discovery a worldwide priority. In cell-based screening, the mechanism of action (MOA) is identified after antimicrobial activity. This increases rediscovery, impairs low potency candidate detection, and does not guide lead optimization. In this study, high-throughput Fourier-transform infrared (FTIR) spectroscopy was used to discriminate the MOA of 14 antibiotics at pathway, class, and individual antibiotic level. For that, the optimal combinations and parametrizations of spectral preprocessing were selected with cross-validated partial least squares discriminant analysis, to which various machine learning algorithms were applied. This coherently resulted in very good accuracies, independently of the algorithms, and at all levels of MOA. Particularly, an ensemble of subspace discriminants predicted the known pathway (98.6%), antibiotic classes (100%), and individual antibiotics (97.8%) with exceptional accuracy, and similar results were obtained for simulated novel MOA. Even at very low concentrations (1 mu g/mL) and growth inhibition (15%), over 70% pathway and class accuracy was achieved, suggesting FTIR spectroscopy can probe the grey chemical matter. Prediction of inhibitory effect was also examined, for which a squared exponential Gaussian process regression yielded a root mean square error of 0.33 and a R-2 of 0.92, indicating that metabolic alterations leading to growth inhibition are intrinsically reflected on FTIR spectra beyond cell density.
doi_str_mv 10.1007/s00253-021-11102-7
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478031691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651274379</galeid><sourcerecordid>A651274379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013</originalsourceid><addsrcrecordid>eNp9kt-K1TAQxoso7nH1BbyQgF6sF13zp03ay2Xx6MKCoOt1SNNpm6VNapKunKfxVU1PVxdFJBeBmd_3MTN8WfaS4HOCsXgXMKYlyzElOSEE01w8ynakYDTHnBSPsx0mosxFWVcn2bMQbjEmtOL8aXbCWFEwzsQu-_HFTMsYlQW3BATjok2ronEWuQ4pG01jXDQaTaAHZU2YjnV9JJRt0ewiWH1A300c0GD6IY-Dd0s_zEtEe7d4Az6PXtnQOT8hYzuvPLTobH9z9fktCjPo6F3Qbj4c_SalB2MBjaC8NbZ_nj3p1Bjgxf1_mn3dv7-5_Jhff_pwdXlxnesSVzGnTVWxFpdYNDUvea2VKGhZN1ACEVQJIF3VkbaoukbUChgILhi0TZ1aQmDCTrOzzXf27tsCIcrJBA3juF1G0kJUmBFer-jrv9DbtKdN0yWqoozXQrAHqlcjyLS3S1fQq6m84CWhomCiTtT5P6j0WpiMdhY6k-p_COgm0OlqwUMnZ28m5Q-SYLmmQm6pkCkV8pgKKZLo1f3ESzNB-1vyKwYJYBsQUsv24B9W-q_tm03ltVKz9HBnQlSrpMBYrmAamrKfhQPO2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482369773</pqid></control><display><type>article</type><title>Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Ribeiro da Cunha, Bernardo ; P. Fonseca, Luis ; Calado, Cecília</creator><creatorcontrib>Ribeiro da Cunha, Bernardo ; P. Fonseca, Luis ; Calado, Cecília</creatorcontrib><description>Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&amp;CA) 2017 do Instituto Politécnico de Lisboa. Código de referência IPL/2017/DrugsPlatf/ISEL The low rate of discovery and rapid spread of resistant pathogens have made antibiotic discovery a worldwide priority. In cell-based screening, the mechanism of action (MOA) is identified after antimicrobial activity. This increases rediscovery, impairs low potency candidate detection, and does not guide lead optimization. In this study, high-throughput Fourier-transform infrared (FTIR) spectroscopy was used to discriminate the MOA of 14 antibiotics at pathway, class, and individual antibiotic level. For that, the optimal combinations and parametrizations of spectral preprocessing were selected with cross-validated partial least squares discriminant analysis, to which various machine learning algorithms were applied. This coherently resulted in very good accuracies, independently of the algorithms, and at all levels of MOA. Particularly, an ensemble of subspace discriminants predicted the known pathway (98.6%), antibiotic classes (100%), and individual antibiotics (97.8%) with exceptional accuracy, and similar results were obtained for simulated novel MOA. Even at very low concentrations (1 mu g/mL) and growth inhibition (15%), over 70% pathway and class accuracy was achieved, suggesting FTIR spectroscopy can probe the grey chemical matter. Prediction of inhibitory effect was also examined, for which a squared exponential Gaussian process regression yielded a root mean square error of 0.33 and a R-2 of 0.92, indicating that metabolic alterations leading to growth inhibition are intrinsically reflected on FTIR spectra beyond cell density.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-021-11102-7</identifier><identifier>PMID: 33443637</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer</publisher><subject>Algorithms ; Anti-Bacterial Agents - pharmacology ; Antibiotic discovery ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial activity ; Antimicrobial potency ; Biomedical and Life Sciences ; Biotechnology ; Cell density ; Data analysis ; Discriminant analysis ; Fourier transform infrared spectroscopy ; Fourier transforms ; Gaussian process ; Infrared spectroscopy ; Learning algorithms ; Least-Squares Analysis ; Life Sciences ; Low concentrations ; Machine Learning ; Mechanism of action (MOA) ; Methods and Protocols ; Microbial Genetics and Genomics ; Microbiology ; Observations ; Optimization ; Physiological aspects ; Regression analysis ; Spectroscopy ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis</subject><ispartof>Applied microbiology and biotechnology, 2021-02, Vol.105 (3), p.1269-1286</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013</citedby><cites>FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013</cites><orcidid>0000-0001-8429-6977 ; 0000-0002-5264-9755 ; 0000-0002-0303-9416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2482369773/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2482369773?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,11669,27905,27906,36041,36042,44344,74644</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33443637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ribeiro da Cunha, Bernardo</creatorcontrib><creatorcontrib>P. Fonseca, Luis</creatorcontrib><creatorcontrib>Calado, Cecília</creatorcontrib><title>Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&amp;CA) 2017 do Instituto Politécnico de Lisboa. Código de referência IPL/2017/DrugsPlatf/ISEL The low rate of discovery and rapid spread of resistant pathogens have made antibiotic discovery a worldwide priority. In cell-based screening, the mechanism of action (MOA) is identified after antimicrobial activity. This increases rediscovery, impairs low potency candidate detection, and does not guide lead optimization. In this study, high-throughput Fourier-transform infrared (FTIR) spectroscopy was used to discriminate the MOA of 14 antibiotics at pathway, class, and individual antibiotic level. For that, the optimal combinations and parametrizations of spectral preprocessing were selected with cross-validated partial least squares discriminant analysis, to which various machine learning algorithms were applied. This coherently resulted in very good accuracies, independently of the algorithms, and at all levels of MOA. Particularly, an ensemble of subspace discriminants predicted the known pathway (98.6%), antibiotic classes (100%), and individual antibiotics (97.8%) with exceptional accuracy, and similar results were obtained for simulated novel MOA. Even at very low concentrations (1 mu g/mL) and growth inhibition (15%), over 70% pathway and class accuracy was achieved, suggesting FTIR spectroscopy can probe the grey chemical matter. Prediction of inhibitory effect was also examined, for which a squared exponential Gaussian process regression yielded a root mean square error of 0.33 and a R-2 of 0.92, indicating that metabolic alterations leading to growth inhibition are intrinsically reflected on FTIR spectra beyond cell density.</description><subject>Algorithms</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic discovery</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial potency</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell density</subject><subject>Data analysis</subject><subject>Discriminant analysis</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Gaussian process</subject><subject>Infrared spectroscopy</subject><subject>Learning algorithms</subject><subject>Least-Squares Analysis</subject><subject>Life Sciences</subject><subject>Low concentrations</subject><subject>Machine Learning</subject><subject>Mechanism of action (MOA)</subject><subject>Methods and Protocols</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Observations</subject><subject>Optimization</subject><subject>Physiological aspects</subject><subject>Regression analysis</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kt-K1TAQxoso7nH1BbyQgF6sF13zp03ay2Xx6MKCoOt1SNNpm6VNapKunKfxVU1PVxdFJBeBmd_3MTN8WfaS4HOCsXgXMKYlyzElOSEE01w8ynakYDTHnBSPsx0mosxFWVcn2bMQbjEmtOL8aXbCWFEwzsQu-_HFTMsYlQW3BATjok2ronEWuQ4pG01jXDQaTaAHZU2YjnV9JJRt0ewiWH1A300c0GD6IY-Dd0s_zEtEe7d4Az6PXtnQOT8hYzuvPLTobH9z9fktCjPo6F3Qbj4c_SalB2MBjaC8NbZ_nj3p1Bjgxf1_mn3dv7-5_Jhff_pwdXlxnesSVzGnTVWxFpdYNDUvea2VKGhZN1ACEVQJIF3VkbaoukbUChgILhi0TZ1aQmDCTrOzzXf27tsCIcrJBA3juF1G0kJUmBFer-jrv9DbtKdN0yWqoozXQrAHqlcjyLS3S1fQq6m84CWhomCiTtT5P6j0WpiMdhY6k-p_COgm0OlqwUMnZ28m5Q-SYLmmQm6pkCkV8pgKKZLo1f3ESzNB-1vyKwYJYBsQUsv24B9W-q_tm03ltVKz9HBnQlSrpMBYrmAamrKfhQPO2A</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ribeiro da Cunha, Bernardo</creator><creator>P. Fonseca, Luis</creator><creator>Calado, Cecília</creator><general>Springer</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>RCLKO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8429-6977</orcidid><orcidid>https://orcid.org/0000-0002-5264-9755</orcidid><orcidid>https://orcid.org/0000-0002-0303-9416</orcidid></search><sort><creationdate>20210201</creationdate><title>Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning</title><author>Ribeiro da Cunha, Bernardo ; P. Fonseca, Luis ; Calado, Cecília</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic discovery</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial potency</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell density</topic><topic>Data analysis</topic><topic>Discriminant analysis</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Gaussian process</topic><topic>Infrared spectroscopy</topic><topic>Learning algorithms</topic><topic>Least-Squares Analysis</topic><topic>Life Sciences</topic><topic>Low concentrations</topic><topic>Machine Learning</topic><topic>Mechanism of action (MOA)</topic><topic>Methods and Protocols</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Observations</topic><topic>Optimization</topic><topic>Physiological aspects</topic><topic>Regression analysis</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro da Cunha, Bernardo</creatorcontrib><creatorcontrib>P. Fonseca, Luis</creatorcontrib><creatorcontrib>Calado, Cecília</creatorcontrib><collection>RCAAP open access repository</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro da Cunha, Bernardo</au><au>P. Fonseca, Luis</au><au>Calado, Cecília</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>105</volume><issue>3</issue><spage>1269</spage><epage>1286</epage><pages>1269-1286</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&amp;CA) 2017 do Instituto Politécnico de Lisboa. Código de referência IPL/2017/DrugsPlatf/ISEL The low rate of discovery and rapid spread of resistant pathogens have made antibiotic discovery a worldwide priority. In cell-based screening, the mechanism of action (MOA) is identified after antimicrobial activity. This increases rediscovery, impairs low potency candidate detection, and does not guide lead optimization. In this study, high-throughput Fourier-transform infrared (FTIR) spectroscopy was used to discriminate the MOA of 14 antibiotics at pathway, class, and individual antibiotic level. For that, the optimal combinations and parametrizations of spectral preprocessing were selected with cross-validated partial least squares discriminant analysis, to which various machine learning algorithms were applied. This coherently resulted in very good accuracies, independently of the algorithms, and at all levels of MOA. Particularly, an ensemble of subspace discriminants predicted the known pathway (98.6%), antibiotic classes (100%), and individual antibiotics (97.8%) with exceptional accuracy, and similar results were obtained for simulated novel MOA. Even at very low concentrations (1 mu g/mL) and growth inhibition (15%), over 70% pathway and class accuracy was achieved, suggesting FTIR spectroscopy can probe the grey chemical matter. Prediction of inhibitory effect was also examined, for which a squared exponential Gaussian process regression yielded a root mean square error of 0.33 and a R-2 of 0.92, indicating that metabolic alterations leading to growth inhibition are intrinsically reflected on FTIR spectra beyond cell density.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer</pub><pmid>33443637</pmid><doi>10.1007/s00253-021-11102-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8429-6977</orcidid><orcidid>https://orcid.org/0000-0002-5264-9755</orcidid><orcidid>https://orcid.org/0000-0002-0303-9416</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2021-02, Vol.105 (3), p.1269-1286
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2478031691
source ABI/INFORM Global; Springer Nature
subjects Algorithms
Anti-Bacterial Agents - pharmacology
Antibiotic discovery
Antibiotics
Antiinfectives and antibacterials
Antimicrobial activity
Antimicrobial potency
Biomedical and Life Sciences
Biotechnology
Cell density
Data analysis
Discriminant analysis
Fourier transform infrared spectroscopy
Fourier transforms
Gaussian process
Infrared spectroscopy
Learning algorithms
Least-Squares Analysis
Life Sciences
Low concentrations
Machine Learning
Mechanism of action (MOA)
Methods and Protocols
Microbial Genetics and Genomics
Microbiology
Observations
Optimization
Physiological aspects
Regression analysis
Spectroscopy
Spectroscopy, Fourier Transform Infrared
Spectrum analysis
title Simultaneous elucidation of antibiotic mechanism of action and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20elucidation%20of%20antibiotic%20mechanism%20of%20action%20and%20potency%20with%20high-throughput%20Fourier-transform%20infrared%20(FTIR)%20spectroscopy%20and%20machine%20learning&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Ribeiro%20da%20Cunha,%20Bernardo&rft.date=2021-02-01&rft.volume=105&rft.issue=3&rft.spage=1269&rft.epage=1286&rft.pages=1269-1286&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-021-11102-7&rft_dat=%3Cgale_proqu%3EA651274379%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-2b883d0507b96569ca74259be5e172a7e1f8f1d48fb79ae3e7673edb9a7e77013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2482369773&rft_id=info:pmid/33443637&rft_galeid=A651274379&rfr_iscdi=true