Loading…
Role of p38 mitogen‐activated protein kinase signalling in virus replication and potential for developing broad spectrum antiviral drugs
Summary Mitogen‐activated protein kinases (MAPKs) play a key role in complex cellular processes such as proliferation, development, differentiation, transformation and apoptosis. Mammals express at least four distinctly regulated groups of MAPKs which include extracellular signal‐related kinases (ER...
Saved in:
Published in: | Reviews in medical virology 2021-09, Vol.31 (5), p.1-16 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
Mitogen‐activated protein kinases (MAPKs) play a key role in complex cellular processes such as proliferation, development, differentiation, transformation and apoptosis. Mammals express at least four distinctly regulated groups of MAPKs which include extracellular signal‐related kinases (ERK)‐1/2, p38 proteins, Jun amino‐terminal kinases (JNK1/2/3) and ERK5. p38 MAPK is activated by a wide range of cellular stresses and modulates activity of several downstream kinases and transcription factors which are involved in regulating cytoskeleton remodeling, cell cycle modulation, inflammation, antiviral response and apoptosis. In viral infections, activation of cell signalling pathways is part of the cellular defense mechanism with the basic aim of inducing an antiviral state. However, viruses can exploit enhanced cell signalling activities to support various stages of their replication cycles. Kinase activity can be inhibited by small molecule chemical inhibitors, so one strategy to develop antiviral drugs is to target these cellular signalling pathways. In this review, we provide an overview on the current understanding of various cellular and viral events regulated by the p38 signalling pathway, with a special emphasis on targeting these events for antiviral drug development which might identify candidates with broad spectrum activity. |
---|---|
ISSN: | 1052-9276 1099-1654 |
DOI: | 10.1002/rmv.2217 |