Loading…
A novel system that continuously visualizes and analyzes respiratory sounds to promptly evaluate upper airway abnormalities: a pilot study
Although respiratory sounds are useful indicators for evaluating abnormalities of the upper airway and lungs, the accuracy of their evaluation may be limited. The continuous evaluation and visualization of respiratory sounds has so far been impossible. To resolve these problems, we developed a novel...
Saved in:
Published in: | Journal of clinical monitoring and computing 2022-02, Vol.36 (1), p.221-226 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although respiratory sounds are useful indicators for evaluating abnormalities of the upper airway and lungs, the accuracy of their evaluation may be limited. The continuous evaluation and visualization of respiratory sounds has so far been impossible. To resolve these problems, we developed a novel continuous visualization system for assessing respiratory sounds. Our novel system was used to evaluate respiratory abnormalities in two patients. The results were not known until later. The first patient was a 23-year-old man with chronic granulomatous disease and persistent anorexia. During his hospital stay, he exhibited a consciousness disorder, bradypnea, and hypercapnia requiring tracheal intubation. After the administration of muscle relaxant, he suddenly developed acute airway stenosis. Because we could not intubate and ventilate, we performed cricothyroidotomy. Subsequent review of our novel system revealed mild stridor before the onset of acute airway stenosis, which had not been recognized clinically. The second patient was a 74-year-old woman who had been intubated several days earlier for tracheal burn injury, and was extubated after alleviation of her laryngeal edema. After extubation, she gradually developed inspiratory stridor. We re-intubated her after diagnosing post-extubation laryngeal edema. Subsequent review of our novel system revealed serially increased stridor after the extubation, at an earlier time than was recognized by healthcare providers. This unique continuous monitoring and visualization system for respiratory sounds could be an objective tool for improving patient safety regarding airway complications. |
---|---|
ISSN: | 1387-1307 1573-2614 |
DOI: | 10.1007/s10877-020-00641-5 |