Loading…

The GSK-3β/β-Catenin Signaling–Mediated Brain–Derived Neurotrophic Factor Pathway Is Involved in Aluminum-Induced Impairment of Hippocampal LTP In Vivo

The neurotoxic effects of aluminum (Al) are associated with the impairment of synaptic plasticity, the biological basis of learning and memory, the major form of which is long-term potentiation (LTP). The canonical glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling–mediated brain–derived neuro...

Full description

Saved in:
Bibliographic Details
Published in:Biological trace element research 2021-12, Vol.199 (12), p.4635-4645
Main Authors: Zhang, Huifang, Han, Yingchao, Zhang, Ling, Jia, Xiaofang, Niu, Qiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The neurotoxic effects of aluminum (Al) are associated with the impairment of synaptic plasticity, the biological basis of learning and memory, the major form of which is long-term potentiation (LTP). The canonical glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling–mediated brain–derived neurotrophic factor (BDNF) pathway has been suggested to play important roles in memory. Thus, Al may affect LTP through this pathway. In this study, a Sprague-Dawley rat model of neurotoxicity was established through intracerebroventricular (i.c.v.) injection of aluminum maltol (Al(mal) 3 ), which was achieved by preimplantation of a cannula into the lateral ventricle. The rats in the control and Al-treated groups received a daily injection of SB216763, an inhibitor of GSK-3β. Electrophysiology and western blot analysis were used to investigate the regulatory effect of the GSK-3β/β-catenin signaling-mediated BDNF pathway on LTP impairment induced by Al(mal) 3 . The results confirmed that i.c.v. injection of Al(mal) 3 significantly suppressed the field excitatory postsynaptic potential (fEPSP) amplitude, as indicated by a decrease in BDNF protein expression, which was accompanied by dose-dependent decreases in β-catenin protein expression and the phosphorylation of GSK-3β at Ser9. Rats that received SB216763, a GSK-3β inhibitor, exhibited higher fEPSP amplitudes than control rats. Furthermore, SB216763 treatment upregulated the hippocampal protein expression of BDNF and β-catenin while increasing the ratio of p-GSK-3β/GSK-3β. From the perspective of the identified β-catenin–BDNF axis, Al impairs hippocampal LTP, possibly through the GSK-3β/β-catenin signaling–mediated BDNF pathway.
ISSN:0163-4984
1559-0720
1559-0720
DOI:10.1007/s12011-021-02582-9