Loading…
Multichannel search strategy for improving the detection of auditory steady-state response
Auditory steady-state response (ASSR) is useful for hearing threshold estimation. The ASSR is usually detected with objective response detectors (ORD). The performance of these detectors depends on the signal-to-noise ratio (SNR) as well as the signal length. Since it is undesirable to increase the...
Saved in:
Published in: | Medical & biological engineering & computing 2021-02, Vol.59 (2), p.391-399 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Auditory steady-state response (ASSR) is useful for hearing threshold estimation. The ASSR is usually detected with objective response detectors (ORD). The performance of these detectors depends on the signal-to-noise ratio (SNR) as well as the signal length. Since it is undesirable to increase the signal length, then, this work provides a multivariate technique for improving the SNR and consequently the detection power. We propose the insertion of a short calibration step before the detection protocol, in order to perform a search among the available electroencephalogram (EEG) derivations and select the derivation with the highest SNR. The ORD used in this work was the magnitude-squared coherence (MSC). The standard detection protocol is to use the same EEG derivation in all exams. Using 22-scalp positions, the new technique achieved a detection rate higher than that obtained in 99.13% of the standard detection protocol. When restrictions were applied to the search, a superior performance was achieved. Thus, the technique proposed was able to track the best EEG derivations before exams and seems to be able to deal with the variability between individuals and between sessions.
Graphical abstract |
---|---|
ISSN: | 0140-0118 1741-0444 |
DOI: | 10.1007/s11517-021-02323-z |