Loading…
Drug-Eluting Hydrophilic Coating Modification of Intraocular Lens via Facile Dopamine Self-Polymerization for Posterior Capsular Opacification Prevention
Posterior capsular opacification (PCO) is the most important complication in cataract phacoemulsification and intraocular lens (IOL) implantation surgery, mainly stemming from the adhesion, proliferation, and transdifferentiation of the postsurgically residual lens epithelial cells (LECs). Previous...
Saved in:
Published in: | ACS biomaterials science & engineering 2021-03, Vol.7 (3), p.1065-1073 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Posterior capsular opacification (PCO) is the most important complication in cataract phacoemulsification and intraocular lens (IOL) implantation surgery, mainly stemming from the adhesion, proliferation, and transdifferentiation of the postsurgically residual lens epithelial cells (LECs). Previous investigations mainly focused on the hydrophilic surface modification of the IOLs for PCO prevention, such as heparinization. However, the long-term clinical investigations show that there is no significant difference between pristine and heparinized IOLs. In the present study, a synergetic coating with properties of drug-eluting and hydrophilicity was designed and modified onto the IOL surface via facile dopamine self-polymerization. The antiproliferative drug doxorubicin (DOX) was loaded when a polydopamine (PDA) coating was formed on the IOL surface. The hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) could be subsequently grafted onto the drug-loaded PDA coating surface easily. The hydrophilic outer layer could slow down drug-eluting from underneath the drug-incorporated coating. In vitro and in vivo investigations demonstrated that such multifunctionalized coating-modified IOLs could not only thoroughly and effectively prevent PCO development by induced cell apoptosis but also render safety and biocompatibility to the surrounding tissues. |
---|---|
ISSN: | 2373-9878 2373-9878 |
DOI: | 10.1021/acsbiomaterials.0c01705 |