Loading…

Hypoxic Preconditioning Induces Neuronal Differentiation of Infrapatellar Fat Pad Stem Cells through Epigenetic Alteration

Hypoxia is considered a key factor in cellular differentiation and proliferation, particularly during embryonic development; the process of early neurogenesis also occurs under hypoxic conditions. Apart from these developmental processes, hypoxia preconditioning or mild hypoxic sensitization develop...

Full description

Saved in:
Bibliographic Details
Published in:ACS chemical neuroscience 2021-02, Vol.12 (4), p.704-718
Main Authors: Radhakrishnan, Subathra, Martin, Catherine Ann, Dhayanithy, Geethanjali, Reddy, Mettu Srinivas, Rela, Mohamed, Kalkura, Subbaraya Narayana, Sellathamby, Shanmugaapriya
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hypoxia is considered a key factor in cellular differentiation and proliferation, particularly during embryonic development; the process of early neurogenesis also occurs under hypoxic conditions. Apart from these developmental processes, hypoxia preconditioning or mild hypoxic sensitization develops resistance against ischemic stroke in deteriorating tissues. We therefore hypothesized that neurons resulting from hypoxia-regulated neuronal differentiation could be the best choice for treating brain ischemia, which contributes to neurodegeneration. In this study, infrapatellar fat pad (IFP), an adipose tissue present beneath the knee joint, was used as the stem cell source. IFP-derived stem cells (IFPSCs) are totally adherent and are mesenchymal stem cells. The transdifferentiation protocol involved hypoxia preconditioning, the use of hypoxic-conditioned medium, and maintenance in maturation medium with α-lipoic acid. The differentiated cells were characterized using microscopy, reverse transcription PCR, real time PCR, and immunocytochemistry. To evaluate the epigenetic reprogramming of IFPSCs to become neuron-like cells, methylation microarrays were performed. Hypoxia preconditioning stabilized and allowed for the translocation of hypoxia inducible factor 1α into the nucleus and induced achaete-scute homologue 1 and doublecortin expression. Following induction, the resultant cells expressed neuronal markers neuron-specific enolase, neurofilament-light chain, growth associated protein 43, synaptosome associated protein 25, and β-III tubulin. The differentiated neural-lineage cells had functional gene expression pertaining to neurotransmitters, their release, and their receptors. The molecular signaling mechanisms regulated developmental neurogenesis. Furthermore, the in vitro physiological condition regulated neurotransmitter respecification or switching during IFPSC differentiation to neurons. Thus, differentiated neurons were fabricated against the ischemic region to treat neurodegenerative diseases.
ISSN:1948-7193
1948-7193
DOI:10.1021/acschemneuro.0c00728