Loading…

Common pathogenesis for sirenomelia, OEIS complex, limb‐body wall defect, and other malformations of caudal structures

Decades of clinical, pathological, and epidemiological study and the recent application of advanced microarray and gene sequencing technologies have led to an understanding of the causes and pathogenesis of most recognized patterns of malformation. Still, there remain a number of patterns of malform...

Full description

Saved in:
Bibliographic Details
Published in:American journal of medical genetics. Part A 2021-05, Vol.185 (5), p.1379-1387
Main Author: Stevenson, Roger E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Decades of clinical, pathological, and epidemiological study and the recent application of advanced microarray and gene sequencing technologies have led to an understanding of the causes and pathogenesis of most recognized patterns of malformation. Still, there remain a number of patterns of malformation whose pathogenesis has not been established. Six such patterns of malformation are sirenomelia, VACTERL association, OEIS complex, limb‐body wall defect (LBWD), urorectal septum malformation (URSM) sequence, and MURCS association, all of which predominantly affect caudal structures. On the basis of the overlap of the component malformations, the co‐occurrence in individual fetuses, and the findings on fetal examination, a common pathogenesis is proposed for these patterns of malformation. The presence of a single artery in the umbilical cord provides a visible clue to the pathogenesis of all cases of sirenomelia and 30%–50% of cases of VACTERL association, OEIS complex, URSM sequence, and LBWD. The single artery is formed by a coalescence of arteries that supply the yolk sac, arises from the descending aorta high in the abdominal cavity, and redirects blood flow from the developing caudal structures of the embryo to the placenta. This phenomenon during embryogenesis is termed vitelline vascular steal.
ISSN:1552-4825
1552-4833
DOI:10.1002/ajmg.a.62103