Loading…

Effects of evaporative cooling and dietary zinc source on heat shock responses and mammary gland development in lactating dairy cows during summer

The objective of this study was to examine the effects of evaporative cooling and dietary supplemental Zn source on heat shock responses and mammary gland development of lactating dairy cows during summer. Seventy-two multiparous lactating Holstein cows were randomly assigned to 1 of 4 treatments in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2021-04, Vol.104 (4), p.5021-5033
Main Authors: Orellana Rivas, R.M., Marins, T.N., Weng, X., Monteiro, A.P.A., Guo, J., Gao, J., Chen, Y.-C., Woldemeskel, M.W., Bernard, J.K., Tomlinson, D.J., DeFrain, J.M., Tao, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to examine the effects of evaporative cooling and dietary supplemental Zn source on heat shock responses and mammary gland development of lactating dairy cows during summer. Seventy-two multiparous lactating Holstein cows were randomly assigned to 1 of 4 treatments in a 2 Ă— 2 factorial arrangement. Cows were either cooled (CL) or not cooled (NC) and fed diets supplemented with 75 mg of Zn/kg of dry matter (DM) from Zn hydroxychloride (IOZ) or 35 mg of Zn/kg of DM from Zn hydroxychloride plus 40 mg of Zn/kg of DM from Zn-Met complex (ZMC). The 168-d trial included a 12-wk baseline phase when all cows were cooled and fed respective dietary treatments, and a subsequent 12-wk environmental challenge phase when NC cows were deprived of evaporative cooling. Plasma was collected from a subset of cows (n = 24) at 1, 3, 5, 12, 26, 41, 54, 68, 81 d of the environmental challenge to measure heat shock protein (HSP) 70 concentration. Mammary biopsies were collected from another subset of cows (n = 30) at enrollment (baseline samples) and at d 7 and 56 of the environmental challenge to analyze gene expression related to heat shock response, apoptosis and anti-oxidative enzymes, and to examine apoptosis and cell proliferation using immunohistochemistry. Supplemental Zn source did not affect milk yield but NC cows produced less milk than CL cows. Supplemental Zn source had no effect on mammary gene expression of HSP27, 70, and 90 or plasma concentrations of HSP70. The NC cows had greater mammary gene expression of HSP than CL cows. Circulating HSP70 of NC cows gradually increased and was higher at 81 d of environmental challenge compared with CL cows. Relative to IOZ, ZMC cows tended to have lower total mammary cell proliferation but greater mammary apoptosis. There was a tendency of greater TNFRSF1A mRNA expression for ZMC compared with IOZ cows, which may suggest upregulated extrinsic apoptosis. At d 7 of environmental challenge, NC cows had numerically higher mammary apoptosis than CL cows although not statistically significant. The NC cows tended to have greater mRNA expression of CAT and SOD3 regardless of time, and had greater mRNA expression of GPX1 at d 56 and FAS at d 7 of the environmental challenge than CL cows. Relative to CL cows, mammary cell proliferation rate was higher for NC cows at d 56 of the environmental challenge. In conclusion, dietary source of supplemental Zn has substantial effect on mammary cell turnover in lact
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2020-19146