Loading…

Epigenetic regulation of the epithelial mesenchymal transition induced by synergistic action of TNF-α and TGF-β in retinal pigment epithelial cells

To clarify the influence of tumor necrosis factor (TNF)-α on fibrotic phenotypes induced by transforming growth factor (TGF)-β in retinal pigment epithelial cells (RPECs) by epigenetic regulation. Human primary retinal pigment epithelial cells (RPECs including ARPE19) were used in cultures in the pr...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2021-03, Vol.544, p.31-37
Main Authors: Hatanaka, Hiroki, Mukai, Atsushi, Ito, Eiko, Ueno, Morio, Sotozono, Chie, Kinoshita, Shigeru, Hamuro, Junji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To clarify the influence of tumor necrosis factor (TNF)-α on fibrotic phenotypes induced by transforming growth factor (TGF)-β in retinal pigment epithelial cells (RPECs) by epigenetic regulation. Human primary retinal pigment epithelial cells (RPECs including ARPE19) were used in cultures in the presence or absence of TNF-α and/or TGF-β2. RT2 Profiler™ (Qiagen) was used for PCR Array for fibrosis and epithelial mesenchymal transition (EMT). Microarray analysis by 3D gene DNA chip was outsourced to Toray Industries Inc. Quantification of histone acetyl transferase (HAT)-related and histone deacetylase (HDAC) related gene expression were also analyzed. HDAC and HAT activity was measured using an EpiQuik HDAC and HAT Activity/Inhibition Assay Kit (Epigentek). CD44, MMP-9, HAT, and HDAC in RPECs were analyzed by western blotting. Analysis of expression of the EMT/fibrosis related CD44 and MMP-9 phenotypes induced by TNF-α+TGF-β2 revealed four alterations in RPECs: 1) abolition of TGF-β2-induced α-SMA by TNF-α; 2) synergy between TNF-α+TGF-β2 for induction of CD44 and MMP-9 phenotypes 3) no inhibition of HDAC activity by either TNF-α or TGF-β2; and 4) significant inhibition of HAT activity by either TNF-α or TGF-β2, but no synergy. The HDAC activation through HAT inhibition by TNF-α+TGF-β was counteracted by HDAC inhibitors, leading to the inhibition of EMT/fibrosis. EMT/fibrotic CD44 and MMP-9 phenotypes were epigenetically upregulated by concerted action of TNF-α and TGF-β in RPECs. The intervention in epigenetic regulation may hold potential in preventing intraocular proliferative diseases. •TNF-α+TGF-β2 epigenetically upregulated CD44 and MMP-9 phenotypes in RPECs.•HAT activity was inhibited by either TNF-α or TGF-β2, but no synergy.•HAT inhibition by TNF-α+TGF-β was counteracted by HDAC inhibitors.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2021.01.060