Loading…

A New Method for Estimating the Incidence of Infectious Diseases

Abstract Ambitious World Health Organization targets for disease elimination require monitoring of epidemics using routine health data in settings of decreasing and low incidence. We evaluated 2 methods commonly applied to routine testing results to estimate incidence rates that assume a uniform pro...

Full description

Saved in:
Bibliographic Details
Published in:American journal of epidemiology 2021-07, Vol.190 (7), p.1386-1395
Main Authors: McManus, Hamish, Callander, Denton, Asselin, Jason, McMahon, James, Hoy, Jennifer F, Templeton, David J, Fairley, Christopher K, Donovan, Basil, Pedrana, Alisa E, Keen, Phillip, Wilson, David P, Elliott, Julian, Kaldor, John, Liaw, Siaw-Teng, Petoumenos, Kathy, Holt, Martin, Hellard, Margaret E, Grulich, Andrew E, Carr, Andrew, Stoove, Mark A, Guy, Rebecca J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153
cites cdi_FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153
container_end_page 1395
container_issue 7
container_start_page 1386
container_title American journal of epidemiology
container_volume 190
creator McManus, Hamish
Callander, Denton
Asselin, Jason
McMahon, James
Hoy, Jennifer F
Templeton, David J
Fairley, Christopher K
Donovan, Basil
Pedrana, Alisa E
Keen, Phillip
Wilson, David P
Elliott, Julian
Kaldor, John
Liaw, Siaw-Teng
Petoumenos, Kathy
Holt, Martin
Hellard, Margaret E
Grulich, Andrew E
Carr, Andrew
Stoove, Mark A
Guy, Rebecca J
description Abstract Ambitious World Health Organization targets for disease elimination require monitoring of epidemics using routine health data in settings of decreasing and low incidence. We evaluated 2 methods commonly applied to routine testing results to estimate incidence rates that assume a uniform probability of infection between consecutive negative and positive tests based on 1) the midpoint of this interval and 2) a randomly selected point in this interval. We compared these with an approximation of the Poisson binomial distribution, which assigns partial incidence to time periods based on the uniform probability of occurrence in these intervals. We assessed bias, variance, and convergence of estimates using simulations of Weibull-distributed failure times with systematically varied baseline incidence and varying trend. We considered results for quarterly, half-yearly, and yearly incidence estimation frequencies. We applied the methods to assess human immunodeficiency virus (HIV) incidence in HIV-negative patients from the Treatment With Antiretrovirals and Their Impact on Positive and Negative Men (TAIPAN) Study, an Australian study of HIV incidence in men who have sex with men, between 2012 and 2018. The Poisson binomial method had reduced bias and variance at low levels of incidence and for increased estimation frequency, with increased consistency of estimation. Application of methods to real-world assessment of HIV incidence found decreased variance in Poisson binomial model estimates, with observed incidence declining to levels where simulation results had indicated bias in midpoint and random-point methods.
doi_str_mv 10.1093/aje/kwab014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2486463522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/aje/kwab014</oup_id><sourcerecordid>2842568012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOqcn7xIQRJC6_E57c8ypg6kXPYc0-eo6t3Y2LcP_3oxNDx78LuEjDy_v9yB0RskNJRkf2DkMPtY2J1TsoR4VWiWKSbWPeoQQlmRMsSN0HMKcEEozSQ7REeeSi4yIHrod4mdY4ydoZ7XHRd3gcWjLpW3L6h23M8CTypUeKge4LuJSgGvLugv4rgxgA4QTdFDYRYDT3dtHb_fj19FjMn15mIyG08TxVLaJBmlzTzJQljoitXVKCaq90t7yHIhzXgDVWkuS-iJ--TjppiQFB1TyPrra5q6a-rOD0JplGRwsFraC2McwkSqhuGQsohd_0HndNVVsZ1gqopqU0A11vaVcU4fQQGFWTTy8-TKUmI1YE8WandhIn-8yu3wJ_pf9MRmByy1Qd6t_k74B6NB_5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842568012</pqid></control><display><type>article</type><title>A New Method for Estimating the Incidence of Infectious Diseases</title><source>Oxford Journals Online</source><creator>McManus, Hamish ; Callander, Denton ; Asselin, Jason ; McMahon, James ; Hoy, Jennifer F ; Templeton, David J ; Fairley, Christopher K ; Donovan, Basil ; Pedrana, Alisa E ; Keen, Phillip ; Wilson, David P ; Elliott, Julian ; Kaldor, John ; Liaw, Siaw-Teng ; Petoumenos, Kathy ; Holt, Martin ; Hellard, Margaret E ; Grulich, Andrew E ; Carr, Andrew ; Stoove, Mark A ; Guy, Rebecca J</creator><creatorcontrib>McManus, Hamish ; Callander, Denton ; Asselin, Jason ; McMahon, James ; Hoy, Jennifer F ; Templeton, David J ; Fairley, Christopher K ; Donovan, Basil ; Pedrana, Alisa E ; Keen, Phillip ; Wilson, David P ; Elliott, Julian ; Kaldor, John ; Liaw, Siaw-Teng ; Petoumenos, Kathy ; Holt, Martin ; Hellard, Margaret E ; Grulich, Andrew E ; Carr, Andrew ; Stoove, Mark A ; Guy, Rebecca J</creatorcontrib><description>Abstract Ambitious World Health Organization targets for disease elimination require monitoring of epidemics using routine health data in settings of decreasing and low incidence. We evaluated 2 methods commonly applied to routine testing results to estimate incidence rates that assume a uniform probability of infection between consecutive negative and positive tests based on 1) the midpoint of this interval and 2) a randomly selected point in this interval. We compared these with an approximation of the Poisson binomial distribution, which assigns partial incidence to time periods based on the uniform probability of occurrence in these intervals. We assessed bias, variance, and convergence of estimates using simulations of Weibull-distributed failure times with systematically varied baseline incidence and varying trend. We considered results for quarterly, half-yearly, and yearly incidence estimation frequencies. We applied the methods to assess human immunodeficiency virus (HIV) incidence in HIV-negative patients from the Treatment With Antiretrovirals and Their Impact on Positive and Negative Men (TAIPAN) Study, an Australian study of HIV incidence in men who have sex with men, between 2012 and 2018. The Poisson binomial method had reduced bias and variance at low levels of incidence and for increased estimation frequency, with increased consistency of estimation. Application of methods to real-world assessment of HIV incidence found decreased variance in Poisson binomial model estimates, with observed incidence declining to levels where simulation results had indicated bias in midpoint and random-point methods.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwab014</identifier><identifier>PMID: 33534904</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Antiviral agents ; Bias ; Binomial distribution ; Epidemics ; Estimates ; Estimation ; Failure times ; HIV ; Human immunodeficiency virus ; Infectious diseases ; Medical diagnosis ; Sexually transmitted diseases ; STD ; Variance</subject><ispartof>American journal of epidemiology, 2021-07, Vol.190 (7), p.1386-1395</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153</citedby><cites>FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33534904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McManus, Hamish</creatorcontrib><creatorcontrib>Callander, Denton</creatorcontrib><creatorcontrib>Asselin, Jason</creatorcontrib><creatorcontrib>McMahon, James</creatorcontrib><creatorcontrib>Hoy, Jennifer F</creatorcontrib><creatorcontrib>Templeton, David J</creatorcontrib><creatorcontrib>Fairley, Christopher K</creatorcontrib><creatorcontrib>Donovan, Basil</creatorcontrib><creatorcontrib>Pedrana, Alisa E</creatorcontrib><creatorcontrib>Keen, Phillip</creatorcontrib><creatorcontrib>Wilson, David P</creatorcontrib><creatorcontrib>Elliott, Julian</creatorcontrib><creatorcontrib>Kaldor, John</creatorcontrib><creatorcontrib>Liaw, Siaw-Teng</creatorcontrib><creatorcontrib>Petoumenos, Kathy</creatorcontrib><creatorcontrib>Holt, Martin</creatorcontrib><creatorcontrib>Hellard, Margaret E</creatorcontrib><creatorcontrib>Grulich, Andrew E</creatorcontrib><creatorcontrib>Carr, Andrew</creatorcontrib><creatorcontrib>Stoove, Mark A</creatorcontrib><creatorcontrib>Guy, Rebecca J</creatorcontrib><title>A New Method for Estimating the Incidence of Infectious Diseases</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Abstract Ambitious World Health Organization targets for disease elimination require monitoring of epidemics using routine health data in settings of decreasing and low incidence. We evaluated 2 methods commonly applied to routine testing results to estimate incidence rates that assume a uniform probability of infection between consecutive negative and positive tests based on 1) the midpoint of this interval and 2) a randomly selected point in this interval. We compared these with an approximation of the Poisson binomial distribution, which assigns partial incidence to time periods based on the uniform probability of occurrence in these intervals. We assessed bias, variance, and convergence of estimates using simulations of Weibull-distributed failure times with systematically varied baseline incidence and varying trend. We considered results for quarterly, half-yearly, and yearly incidence estimation frequencies. We applied the methods to assess human immunodeficiency virus (HIV) incidence in HIV-negative patients from the Treatment With Antiretrovirals and Their Impact on Positive and Negative Men (TAIPAN) Study, an Australian study of HIV incidence in men who have sex with men, between 2012 and 2018. The Poisson binomial method had reduced bias and variance at low levels of incidence and for increased estimation frequency, with increased consistency of estimation. Application of methods to real-world assessment of HIV incidence found decreased variance in Poisson binomial model estimates, with observed incidence declining to levels where simulation results had indicated bias in midpoint and random-point methods.</description><subject>Antiviral agents</subject><subject>Bias</subject><subject>Binomial distribution</subject><subject>Epidemics</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Failure times</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Infectious diseases</subject><subject>Medical diagnosis</subject><subject>Sexually transmitted diseases</subject><subject>STD</subject><subject>Variance</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOqcn7xIQRJC6_E57c8ypg6kXPYc0-eo6t3Y2LcP_3oxNDx78LuEjDy_v9yB0RskNJRkf2DkMPtY2J1TsoR4VWiWKSbWPeoQQlmRMsSN0HMKcEEozSQ7REeeSi4yIHrod4mdY4ydoZ7XHRd3gcWjLpW3L6h23M8CTypUeKge4LuJSgGvLugv4rgxgA4QTdFDYRYDT3dtHb_fj19FjMn15mIyG08TxVLaJBmlzTzJQljoitXVKCaq90t7yHIhzXgDVWkuS-iJ--TjppiQFB1TyPrra5q6a-rOD0JplGRwsFraC2McwkSqhuGQsohd_0HndNVVsZ1gqopqU0A11vaVcU4fQQGFWTTy8-TKUmI1YE8WandhIn-8yu3wJ_pf9MRmByy1Qd6t_k74B6NB_5A</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>McManus, Hamish</creator><creator>Callander, Denton</creator><creator>Asselin, Jason</creator><creator>McMahon, James</creator><creator>Hoy, Jennifer F</creator><creator>Templeton, David J</creator><creator>Fairley, Christopher K</creator><creator>Donovan, Basil</creator><creator>Pedrana, Alisa E</creator><creator>Keen, Phillip</creator><creator>Wilson, David P</creator><creator>Elliott, Julian</creator><creator>Kaldor, John</creator><creator>Liaw, Siaw-Teng</creator><creator>Petoumenos, Kathy</creator><creator>Holt, Martin</creator><creator>Hellard, Margaret E</creator><creator>Grulich, Andrew E</creator><creator>Carr, Andrew</creator><creator>Stoove, Mark A</creator><creator>Guy, Rebecca J</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20210701</creationdate><title>A New Method for Estimating the Incidence of Infectious Diseases</title><author>McManus, Hamish ; Callander, Denton ; Asselin, Jason ; McMahon, James ; Hoy, Jennifer F ; Templeton, David J ; Fairley, Christopher K ; Donovan, Basil ; Pedrana, Alisa E ; Keen, Phillip ; Wilson, David P ; Elliott, Julian ; Kaldor, John ; Liaw, Siaw-Teng ; Petoumenos, Kathy ; Holt, Martin ; Hellard, Margaret E ; Grulich, Andrew E ; Carr, Andrew ; Stoove, Mark A ; Guy, Rebecca J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiviral agents</topic><topic>Bias</topic><topic>Binomial distribution</topic><topic>Epidemics</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Failure times</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Infectious diseases</topic><topic>Medical diagnosis</topic><topic>Sexually transmitted diseases</topic><topic>STD</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McManus, Hamish</creatorcontrib><creatorcontrib>Callander, Denton</creatorcontrib><creatorcontrib>Asselin, Jason</creatorcontrib><creatorcontrib>McMahon, James</creatorcontrib><creatorcontrib>Hoy, Jennifer F</creatorcontrib><creatorcontrib>Templeton, David J</creatorcontrib><creatorcontrib>Fairley, Christopher K</creatorcontrib><creatorcontrib>Donovan, Basil</creatorcontrib><creatorcontrib>Pedrana, Alisa E</creatorcontrib><creatorcontrib>Keen, Phillip</creatorcontrib><creatorcontrib>Wilson, David P</creatorcontrib><creatorcontrib>Elliott, Julian</creatorcontrib><creatorcontrib>Kaldor, John</creatorcontrib><creatorcontrib>Liaw, Siaw-Teng</creatorcontrib><creatorcontrib>Petoumenos, Kathy</creatorcontrib><creatorcontrib>Holt, Martin</creatorcontrib><creatorcontrib>Hellard, Margaret E</creatorcontrib><creatorcontrib>Grulich, Andrew E</creatorcontrib><creatorcontrib>Carr, Andrew</creatorcontrib><creatorcontrib>Stoove, Mark A</creatorcontrib><creatorcontrib>Guy, Rebecca J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McManus, Hamish</au><au>Callander, Denton</au><au>Asselin, Jason</au><au>McMahon, James</au><au>Hoy, Jennifer F</au><au>Templeton, David J</au><au>Fairley, Christopher K</au><au>Donovan, Basil</au><au>Pedrana, Alisa E</au><au>Keen, Phillip</au><au>Wilson, David P</au><au>Elliott, Julian</au><au>Kaldor, John</au><au>Liaw, Siaw-Teng</au><au>Petoumenos, Kathy</au><au>Holt, Martin</au><au>Hellard, Margaret E</au><au>Grulich, Andrew E</au><au>Carr, Andrew</au><au>Stoove, Mark A</au><au>Guy, Rebecca J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Method for Estimating the Incidence of Infectious Diseases</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>190</volume><issue>7</issue><spage>1386</spage><epage>1395</epage><pages>1386-1395</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>Abstract Ambitious World Health Organization targets for disease elimination require monitoring of epidemics using routine health data in settings of decreasing and low incidence. We evaluated 2 methods commonly applied to routine testing results to estimate incidence rates that assume a uniform probability of infection between consecutive negative and positive tests based on 1) the midpoint of this interval and 2) a randomly selected point in this interval. We compared these with an approximation of the Poisson binomial distribution, which assigns partial incidence to time periods based on the uniform probability of occurrence in these intervals. We assessed bias, variance, and convergence of estimates using simulations of Weibull-distributed failure times with systematically varied baseline incidence and varying trend. We considered results for quarterly, half-yearly, and yearly incidence estimation frequencies. We applied the methods to assess human immunodeficiency virus (HIV) incidence in HIV-negative patients from the Treatment With Antiretrovirals and Their Impact on Positive and Negative Men (TAIPAN) Study, an Australian study of HIV incidence in men who have sex with men, between 2012 and 2018. The Poisson binomial method had reduced bias and variance at low levels of incidence and for increased estimation frequency, with increased consistency of estimation. Application of methods to real-world assessment of HIV incidence found decreased variance in Poisson binomial model estimates, with observed incidence declining to levels where simulation results had indicated bias in midpoint and random-point methods.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33534904</pmid><doi>10.1093/aje/kwab014</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9262
ispartof American journal of epidemiology, 2021-07, Vol.190 (7), p.1386-1395
issn 0002-9262
1476-6256
language eng
recordid cdi_proquest_miscellaneous_2486463522
source Oxford Journals Online
subjects Antiviral agents
Bias
Binomial distribution
Epidemics
Estimates
Estimation
Failure times
HIV
Human immunodeficiency virus
Infectious diseases
Medical diagnosis
Sexually transmitted diseases
STD
Variance
title A New Method for Estimating the Incidence of Infectious Diseases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Method%20for%20Estimating%20the%20Incidence%20of%20Infectious%20Diseases&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=McManus,%20Hamish&rft.date=2021-07-01&rft.volume=190&rft.issue=7&rft.spage=1386&rft.epage=1395&rft.pages=1386-1395&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/aje/kwab014&rft_dat=%3Cproquest_cross%3E2842568012%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842568012&rft_id=info:pmid/33534904&rft_oup_id=10.1093/aje/kwab014&rfr_iscdi=true