Loading…
A New Method for Estimating the Incidence of Infectious Diseases
Abstract Ambitious World Health Organization targets for disease elimination require monitoring of epidemics using routine health data in settings of decreasing and low incidence. We evaluated 2 methods commonly applied to routine testing results to estimate incidence rates that assume a uniform pro...
Saved in:
Published in: | American journal of epidemiology 2021-07, Vol.190 (7), p.1386-1395 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153 |
container_end_page | 1395 |
container_issue | 7 |
container_start_page | 1386 |
container_title | American journal of epidemiology |
container_volume | 190 |
creator | McManus, Hamish Callander, Denton Asselin, Jason McMahon, James Hoy, Jennifer F Templeton, David J Fairley, Christopher K Donovan, Basil Pedrana, Alisa E Keen, Phillip Wilson, David P Elliott, Julian Kaldor, John Liaw, Siaw-Teng Petoumenos, Kathy Holt, Martin Hellard, Margaret E Grulich, Andrew E Carr, Andrew Stoove, Mark A Guy, Rebecca J |
description | Abstract
Ambitious World Health Organization targets for disease elimination require monitoring of epidemics using routine health data in settings of decreasing and low incidence. We evaluated 2 methods commonly applied to routine testing results to estimate incidence rates that assume a uniform probability of infection between consecutive negative and positive tests based on 1) the midpoint of this interval and 2) a randomly selected point in this interval. We compared these with an approximation of the Poisson binomial distribution, which assigns partial incidence to time periods based on the uniform probability of occurrence in these intervals. We assessed bias, variance, and convergence of estimates using simulations of Weibull-distributed failure times with systematically varied baseline incidence and varying trend. We considered results for quarterly, half-yearly, and yearly incidence estimation frequencies. We applied the methods to assess human immunodeficiency virus (HIV) incidence in HIV-negative patients from the Treatment With Antiretrovirals and Their Impact on Positive and Negative Men (TAIPAN) Study, an Australian study of HIV incidence in men who have sex with men, between 2012 and 2018. The Poisson binomial method had reduced bias and variance at low levels of incidence and for increased estimation frequency, with increased consistency of estimation. Application of methods to real-world assessment of HIV incidence found decreased variance in Poisson binomial model estimates, with observed incidence declining to levels where simulation results had indicated bias in midpoint and random-point methods. |
doi_str_mv | 10.1093/aje/kwab014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2486463522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/aje/kwab014</oup_id><sourcerecordid>2842568012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOqcn7xIQRJC6_E57c8ypg6kXPYc0-eo6t3Y2LcP_3oxNDx78LuEjDy_v9yB0RskNJRkf2DkMPtY2J1TsoR4VWiWKSbWPeoQQlmRMsSN0HMKcEEozSQ7REeeSi4yIHrod4mdY4ydoZ7XHRd3gcWjLpW3L6h23M8CTypUeKge4LuJSgGvLugv4rgxgA4QTdFDYRYDT3dtHb_fj19FjMn15mIyG08TxVLaJBmlzTzJQljoitXVKCaq90t7yHIhzXgDVWkuS-iJ--TjppiQFB1TyPrra5q6a-rOD0JplGRwsFraC2McwkSqhuGQsohd_0HndNVVsZ1gqopqU0A11vaVcU4fQQGFWTTy8-TKUmI1YE8WandhIn-8yu3wJ_pf9MRmByy1Qd6t_k74B6NB_5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842568012</pqid></control><display><type>article</type><title>A New Method for Estimating the Incidence of Infectious Diseases</title><source>Oxford Journals Online</source><creator>McManus, Hamish ; Callander, Denton ; Asselin, Jason ; McMahon, James ; Hoy, Jennifer F ; Templeton, David J ; Fairley, Christopher K ; Donovan, Basil ; Pedrana, Alisa E ; Keen, Phillip ; Wilson, David P ; Elliott, Julian ; Kaldor, John ; Liaw, Siaw-Teng ; Petoumenos, Kathy ; Holt, Martin ; Hellard, Margaret E ; Grulich, Andrew E ; Carr, Andrew ; Stoove, Mark A ; Guy, Rebecca J</creator><creatorcontrib>McManus, Hamish ; Callander, Denton ; Asselin, Jason ; McMahon, James ; Hoy, Jennifer F ; Templeton, David J ; Fairley, Christopher K ; Donovan, Basil ; Pedrana, Alisa E ; Keen, Phillip ; Wilson, David P ; Elliott, Julian ; Kaldor, John ; Liaw, Siaw-Teng ; Petoumenos, Kathy ; Holt, Martin ; Hellard, Margaret E ; Grulich, Andrew E ; Carr, Andrew ; Stoove, Mark A ; Guy, Rebecca J</creatorcontrib><description>Abstract
Ambitious World Health Organization targets for disease elimination require monitoring of epidemics using routine health data in settings of decreasing and low incidence. We evaluated 2 methods commonly applied to routine testing results to estimate incidence rates that assume a uniform probability of infection between consecutive negative and positive tests based on 1) the midpoint of this interval and 2) a randomly selected point in this interval. We compared these with an approximation of the Poisson binomial distribution, which assigns partial incidence to time periods based on the uniform probability of occurrence in these intervals. We assessed bias, variance, and convergence of estimates using simulations of Weibull-distributed failure times with systematically varied baseline incidence and varying trend. We considered results for quarterly, half-yearly, and yearly incidence estimation frequencies. We applied the methods to assess human immunodeficiency virus (HIV) incidence in HIV-negative patients from the Treatment With Antiretrovirals and Their Impact on Positive and Negative Men (TAIPAN) Study, an Australian study of HIV incidence in men who have sex with men, between 2012 and 2018. The Poisson binomial method had reduced bias and variance at low levels of incidence and for increased estimation frequency, with increased consistency of estimation. Application of methods to real-world assessment of HIV incidence found decreased variance in Poisson binomial model estimates, with observed incidence declining to levels where simulation results had indicated bias in midpoint and random-point methods.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwab014</identifier><identifier>PMID: 33534904</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Antiviral agents ; Bias ; Binomial distribution ; Epidemics ; Estimates ; Estimation ; Failure times ; HIV ; Human immunodeficiency virus ; Infectious diseases ; Medical diagnosis ; Sexually transmitted diseases ; STD ; Variance</subject><ispartof>American journal of epidemiology, 2021-07, Vol.190 (7), p.1386-1395</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153</citedby><cites>FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33534904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McManus, Hamish</creatorcontrib><creatorcontrib>Callander, Denton</creatorcontrib><creatorcontrib>Asselin, Jason</creatorcontrib><creatorcontrib>McMahon, James</creatorcontrib><creatorcontrib>Hoy, Jennifer F</creatorcontrib><creatorcontrib>Templeton, David J</creatorcontrib><creatorcontrib>Fairley, Christopher K</creatorcontrib><creatorcontrib>Donovan, Basil</creatorcontrib><creatorcontrib>Pedrana, Alisa E</creatorcontrib><creatorcontrib>Keen, Phillip</creatorcontrib><creatorcontrib>Wilson, David P</creatorcontrib><creatorcontrib>Elliott, Julian</creatorcontrib><creatorcontrib>Kaldor, John</creatorcontrib><creatorcontrib>Liaw, Siaw-Teng</creatorcontrib><creatorcontrib>Petoumenos, Kathy</creatorcontrib><creatorcontrib>Holt, Martin</creatorcontrib><creatorcontrib>Hellard, Margaret E</creatorcontrib><creatorcontrib>Grulich, Andrew E</creatorcontrib><creatorcontrib>Carr, Andrew</creatorcontrib><creatorcontrib>Stoove, Mark A</creatorcontrib><creatorcontrib>Guy, Rebecca J</creatorcontrib><title>A New Method for Estimating the Incidence of Infectious Diseases</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Abstract
Ambitious World Health Organization targets for disease elimination require monitoring of epidemics using routine health data in settings of decreasing and low incidence. We evaluated 2 methods commonly applied to routine testing results to estimate incidence rates that assume a uniform probability of infection between consecutive negative and positive tests based on 1) the midpoint of this interval and 2) a randomly selected point in this interval. We compared these with an approximation of the Poisson binomial distribution, which assigns partial incidence to time periods based on the uniform probability of occurrence in these intervals. We assessed bias, variance, and convergence of estimates using simulations of Weibull-distributed failure times with systematically varied baseline incidence and varying trend. We considered results for quarterly, half-yearly, and yearly incidence estimation frequencies. We applied the methods to assess human immunodeficiency virus (HIV) incidence in HIV-negative patients from the Treatment With Antiretrovirals and Their Impact on Positive and Negative Men (TAIPAN) Study, an Australian study of HIV incidence in men who have sex with men, between 2012 and 2018. The Poisson binomial method had reduced bias and variance at low levels of incidence and for increased estimation frequency, with increased consistency of estimation. Application of methods to real-world assessment of HIV incidence found decreased variance in Poisson binomial model estimates, with observed incidence declining to levels where simulation results had indicated bias in midpoint and random-point methods.</description><subject>Antiviral agents</subject><subject>Bias</subject><subject>Binomial distribution</subject><subject>Epidemics</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Failure times</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Infectious diseases</subject><subject>Medical diagnosis</subject><subject>Sexually transmitted diseases</subject><subject>STD</subject><subject>Variance</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOqcn7xIQRJC6_E57c8ypg6kXPYc0-eo6t3Y2LcP_3oxNDx78LuEjDy_v9yB0RskNJRkf2DkMPtY2J1TsoR4VWiWKSbWPeoQQlmRMsSN0HMKcEEozSQ7REeeSi4yIHrod4mdY4ydoZ7XHRd3gcWjLpW3L6h23M8CTypUeKge4LuJSgGvLugv4rgxgA4QTdFDYRYDT3dtHb_fj19FjMn15mIyG08TxVLaJBmlzTzJQljoitXVKCaq90t7yHIhzXgDVWkuS-iJ--TjppiQFB1TyPrra5q6a-rOD0JplGRwsFraC2McwkSqhuGQsohd_0HndNVVsZ1gqopqU0A11vaVcU4fQQGFWTTy8-TKUmI1YE8WandhIn-8yu3wJ_pf9MRmByy1Qd6t_k74B6NB_5A</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>McManus, Hamish</creator><creator>Callander, Denton</creator><creator>Asselin, Jason</creator><creator>McMahon, James</creator><creator>Hoy, Jennifer F</creator><creator>Templeton, David J</creator><creator>Fairley, Christopher K</creator><creator>Donovan, Basil</creator><creator>Pedrana, Alisa E</creator><creator>Keen, Phillip</creator><creator>Wilson, David P</creator><creator>Elliott, Julian</creator><creator>Kaldor, John</creator><creator>Liaw, Siaw-Teng</creator><creator>Petoumenos, Kathy</creator><creator>Holt, Martin</creator><creator>Hellard, Margaret E</creator><creator>Grulich, Andrew E</creator><creator>Carr, Andrew</creator><creator>Stoove, Mark A</creator><creator>Guy, Rebecca J</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20210701</creationdate><title>A New Method for Estimating the Incidence of Infectious Diseases</title><author>McManus, Hamish ; Callander, Denton ; Asselin, Jason ; McMahon, James ; Hoy, Jennifer F ; Templeton, David J ; Fairley, Christopher K ; Donovan, Basil ; Pedrana, Alisa E ; Keen, Phillip ; Wilson, David P ; Elliott, Julian ; Kaldor, John ; Liaw, Siaw-Teng ; Petoumenos, Kathy ; Holt, Martin ; Hellard, Margaret E ; Grulich, Andrew E ; Carr, Andrew ; Stoove, Mark A ; Guy, Rebecca J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiviral agents</topic><topic>Bias</topic><topic>Binomial distribution</topic><topic>Epidemics</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Failure times</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Infectious diseases</topic><topic>Medical diagnosis</topic><topic>Sexually transmitted diseases</topic><topic>STD</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McManus, Hamish</creatorcontrib><creatorcontrib>Callander, Denton</creatorcontrib><creatorcontrib>Asselin, Jason</creatorcontrib><creatorcontrib>McMahon, James</creatorcontrib><creatorcontrib>Hoy, Jennifer F</creatorcontrib><creatorcontrib>Templeton, David J</creatorcontrib><creatorcontrib>Fairley, Christopher K</creatorcontrib><creatorcontrib>Donovan, Basil</creatorcontrib><creatorcontrib>Pedrana, Alisa E</creatorcontrib><creatorcontrib>Keen, Phillip</creatorcontrib><creatorcontrib>Wilson, David P</creatorcontrib><creatorcontrib>Elliott, Julian</creatorcontrib><creatorcontrib>Kaldor, John</creatorcontrib><creatorcontrib>Liaw, Siaw-Teng</creatorcontrib><creatorcontrib>Petoumenos, Kathy</creatorcontrib><creatorcontrib>Holt, Martin</creatorcontrib><creatorcontrib>Hellard, Margaret E</creatorcontrib><creatorcontrib>Grulich, Andrew E</creatorcontrib><creatorcontrib>Carr, Andrew</creatorcontrib><creatorcontrib>Stoove, Mark A</creatorcontrib><creatorcontrib>Guy, Rebecca J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McManus, Hamish</au><au>Callander, Denton</au><au>Asselin, Jason</au><au>McMahon, James</au><au>Hoy, Jennifer F</au><au>Templeton, David J</au><au>Fairley, Christopher K</au><au>Donovan, Basil</au><au>Pedrana, Alisa E</au><au>Keen, Phillip</au><au>Wilson, David P</au><au>Elliott, Julian</au><au>Kaldor, John</au><au>Liaw, Siaw-Teng</au><au>Petoumenos, Kathy</au><au>Holt, Martin</au><au>Hellard, Margaret E</au><au>Grulich, Andrew E</au><au>Carr, Andrew</au><au>Stoove, Mark A</au><au>Guy, Rebecca J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Method for Estimating the Incidence of Infectious Diseases</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>190</volume><issue>7</issue><spage>1386</spage><epage>1395</epage><pages>1386-1395</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>Abstract
Ambitious World Health Organization targets for disease elimination require monitoring of epidemics using routine health data in settings of decreasing and low incidence. We evaluated 2 methods commonly applied to routine testing results to estimate incidence rates that assume a uniform probability of infection between consecutive negative and positive tests based on 1) the midpoint of this interval and 2) a randomly selected point in this interval. We compared these with an approximation of the Poisson binomial distribution, which assigns partial incidence to time periods based on the uniform probability of occurrence in these intervals. We assessed bias, variance, and convergence of estimates using simulations of Weibull-distributed failure times with systematically varied baseline incidence and varying trend. We considered results for quarterly, half-yearly, and yearly incidence estimation frequencies. We applied the methods to assess human immunodeficiency virus (HIV) incidence in HIV-negative patients from the Treatment With Antiretrovirals and Their Impact on Positive and Negative Men (TAIPAN) Study, an Australian study of HIV incidence in men who have sex with men, between 2012 and 2018. The Poisson binomial method had reduced bias and variance at low levels of incidence and for increased estimation frequency, with increased consistency of estimation. Application of methods to real-world assessment of HIV incidence found decreased variance in Poisson binomial model estimates, with observed incidence declining to levels where simulation results had indicated bias in midpoint and random-point methods.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33534904</pmid><doi>10.1093/aje/kwab014</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9262 |
ispartof | American journal of epidemiology, 2021-07, Vol.190 (7), p.1386-1395 |
issn | 0002-9262 1476-6256 |
language | eng |
recordid | cdi_proquest_miscellaneous_2486463522 |
source | Oxford Journals Online |
subjects | Antiviral agents Bias Binomial distribution Epidemics Estimates Estimation Failure times HIV Human immunodeficiency virus Infectious diseases Medical diagnosis Sexually transmitted diseases STD Variance |
title | A New Method for Estimating the Incidence of Infectious Diseases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Method%20for%20Estimating%20the%20Incidence%20of%20Infectious%20Diseases&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=McManus,%20Hamish&rft.date=2021-07-01&rft.volume=190&rft.issue=7&rft.spage=1386&rft.epage=1395&rft.pages=1386-1395&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/aje/kwab014&rft_dat=%3Cproquest_cross%3E2842568012%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-7e5abd09e6a1c057ac66417d67da3be0ccd4e1777508df641dddd834901ece153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842568012&rft_id=info:pmid/33534904&rft_oup_id=10.1093/aje/kwab014&rfr_iscdi=true |