Loading…

Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices

Thin-walled tubes that classically form when metal salts react with sodium silicate solution are known as chemical gardens. They share similarities with the porous, catalytic materials in hydrothermal vent chimneys, and both structures are exposed to steep pH gradients that, combined with thermal fa...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2021-02, Vol.37 (7), p.2485-2493
Main Authors: Wang, Qingpu, Steinbock, Oliver
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thin-walled tubes that classically form when metal salts react with sodium silicate solution are known as chemical gardens. They share similarities with the porous, catalytic materials in hydrothermal vent chimneys, and both structures are exposed to steep pH gradients that, combined with thermal factors, might have provided the free energy for prebiotic chemistry on early Earth. We report temperature effects on the shape, composition, and opacity of chemical gardens. Tubes grown at high temperature are more opaque, indicating changes to the membrane structure or thickness. To study this dependence, we developed a temperature-controlled microfluidic device, which allows the formation of analogous membranes at the interface of two coflowing reactant solutions. For the case of Ni­(OH)2, membranes thicken according to a diffusion-controlled mechanism. In the studied range of 10–40 °C, the effective diffusion coefficient is independent of temperature. This suggests that counteracting processes are at play (including an increased solubility) and that the opacity of chemical garden tubes arises from changes in internal morphology. The latter could be linked to experimentally observed dendritic structures within the membranes.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.0c03548