Loading…
Development and evaluation of polymeric nanoparticles as a delivery system for snake envenoming prevention
Polymer-based nanoparticles have become an appealing carrier for improving vaccine delivery efficiency. In this study, we investigated an interesting approach based on PLGA nanoparticles encapsulating Cerastes cerastes venom as an intranasal vaccine delivery system for snake envenomation prevention....
Saved in:
Published in: | Biologicals 2021-04, Vol.70, p.44-52 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymer-based nanoparticles have become an appealing carrier for improving vaccine delivery efficiency. In this study, we investigated an interesting approach based on PLGA nanoparticles encapsulating Cerastes cerastes venom as an intranasal vaccine delivery system for snake envenomation prevention. Particles were synthesized by double emulsion solvent evaporation method and characterized for their size, morphology, distribution, and venom-nanoparticles interactions. An immunization trial was performed in mice by the intranasal route to evaluate the immune response, the reactogenicity, and the protective effect of this nanovaccine.
The physicochemical and structural characteristics of Cc-loaded PLGA NPs revealed that the particles exhibited a spherical shape with a diameter of 370 nm, and a negatively charged surface with a zeta potential value of 19,9 mV.
The immunization with Cc-PLGA NPs can induce a systemic innate and humoral immune response and confers protection against Cerastes cerastes venom (Cc) over than 6 LD50 with a cross-protection against Vipera lebetina venom (Vl) over than 5 LD50. Nano-encapsulation of Cc venom reduced its toxicity and the induced tissue alterations.
Our results confirm that the nano-formulation Cc-PLGA NPs is a potent adjuvant system that improve the humoral immune response and provide protection against high lethal doses of viper venoms.
[Display omitted]
•The PLGA nanoparticles were used for the formulation of vaccine using Cerastes cerastes (Cc) venom as antigen.•The physicochemical properties of the vaccine nanoformulation were analyzed.•PLGA nanoparticles encapsulating Cerastes cerastes venom were used in an immunization protocol by intranasal route.•Cc venom loaded PLGA nanoparticles induced innate and humoral responses.•The immnoprotective effect of the vaccine formulation was evaluated against Cerastes cerastes and Vipera lebetina venoms. |
---|---|
ISSN: | 1045-1056 1095-8320 |
DOI: | 10.1016/j.biologicals.2021.01.003 |