Loading…

Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface

Electrochemical CO2 reduction over Cu could provide value-added multicarbon hydrocarbons and alcohols. Despite recent breakthroughs, it remains a significant challenge to design a catalytic system with high product selectivity. Here we demonstrate that a high selectivity of ethylene (55%) and C2+ pr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2021-02, Vol.143 (7), p.2857-2865
Main Authors: Wang, Jianchun, Cheng, Tao, Fenwick, Aidan Q, Baroud, Turki N, Rosas-Hernández, Alonso, Ko, Jeong Hoon, Gan, Quan, Goddard III, William A, Grubbs, Robert H
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2865
container_issue 7
container_start_page 2857
container_title Journal of the American Chemical Society
container_volume 143
creator Wang, Jianchun
Cheng, Tao
Fenwick, Aidan Q
Baroud, Turki N
Rosas-Hernández, Alonso
Ko, Jeong Hoon
Gan, Quan
Goddard III, William A
Grubbs, Robert H
description Electrochemical CO2 reduction over Cu could provide value-added multicarbon hydrocarbons and alcohols. Despite recent breakthroughs, it remains a significant challenge to design a catalytic system with high product selectivity. Here we demonstrate that a high selectivity of ethylene (55%) and C2+ products (77%) could be achieved by a highly modular tricomponent copolymer modified Cu electrode, rivaling the best performance using other modified polycrystalline Cu foil catalysts. Such a copolymer can be conveniently prepared by a ring-opening metathesis polymerization, thereby offering a new degree of freedom for tuning the selectivity. Control experiments indicate all three components are essential for the selectivity enhancement. A surface characterization showed that the incorporation of a phenylpyridinium component increased the film robustness against delamination. It was also shown that its superior performance is not due to a morphology change of the Cu underneath. Molecular dynamics (MD) simulations indicate that a combination of increased local CO2 concentration, increased porosity for gas diffusion, and the local electric field effect together contribute to the increased ethylene and C2+ product selectivity.
doi_str_mv 10.1021/jacs.0c12478
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2488556083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488556083</sourcerecordid><originalsourceid>FETCH-LOGICAL-a221t-41cfdd67c6ece6773e2969dcfd813ba9e9150cea56a80bae74dd43fbf682669a3</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxYMoOKdvfoA8-tKZP22aPkqZTpgM3HwOaXLLOtKmNq2wb2-KA5_uOeceLpcfQo-UrChh9PmkTVgRQ1mayyu0oBkjSUaZuEYLQghLcin4LboL4RRtyiRdoOMeHJix-QFc7hhez2bw5ghtY7TDn2CnuPUdXne6cmBxdcYaH4bG-Lb3HXQjLn3v3bmFAX9429RNFLGv57yPej8NtTZwj25q7QI8XOYSfb2uD-Um2e7e3suXbaIZo2OSUlNbK3IjwIDIcw6sEIWNoaS80gUUNCMGdCa0JJWGPLU25XVVC8mEKDRfoqe_u_3gvycIo2qbYMA53YGfgmKplFkmiOT_1YhNnfw0dPExRYmaYaoZprrA5L__bmke</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488556083</pqid></control><display><type>article</type><title>Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface</title><source>Access via American Chemical Society</source><creator>Wang, Jianchun ; Cheng, Tao ; Fenwick, Aidan Q ; Baroud, Turki N ; Rosas-Hernández, Alonso ; Ko, Jeong Hoon ; Gan, Quan ; Goddard III, William A ; Grubbs, Robert H</creator><creatorcontrib>Wang, Jianchun ; Cheng, Tao ; Fenwick, Aidan Q ; Baroud, Turki N ; Rosas-Hernández, Alonso ; Ko, Jeong Hoon ; Gan, Quan ; Goddard III, William A ; Grubbs, Robert H</creatorcontrib><description>Electrochemical CO2 reduction over Cu could provide value-added multicarbon hydrocarbons and alcohols. Despite recent breakthroughs, it remains a significant challenge to design a catalytic system with high product selectivity. Here we demonstrate that a high selectivity of ethylene (55%) and C2+ products (77%) could be achieved by a highly modular tricomponent copolymer modified Cu electrode, rivaling the best performance using other modified polycrystalline Cu foil catalysts. Such a copolymer can be conveniently prepared by a ring-opening metathesis polymerization, thereby offering a new degree of freedom for tuning the selectivity. Control experiments indicate all three components are essential for the selectivity enhancement. A surface characterization showed that the incorporation of a phenylpyridinium component increased the film robustness against delamination. It was also shown that its superior performance is not due to a morphology change of the Cu underneath. Molecular dynamics (MD) simulations indicate that a combination of increased local CO2 concentration, increased porosity for gas diffusion, and the local electric field effect together contribute to the increased ethylene and C2+ product selectivity.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c12478</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-02, Vol.143 (7), p.2857-2865</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0057-7817 ; 0000-0003-2000-3789 ; 0000-0001-6430-9128 ; 0000-0003-0097-5716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Jianchun</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Fenwick, Aidan Q</creatorcontrib><creatorcontrib>Baroud, Turki N</creatorcontrib><creatorcontrib>Rosas-Hernández, Alonso</creatorcontrib><creatorcontrib>Ko, Jeong Hoon</creatorcontrib><creatorcontrib>Gan, Quan</creatorcontrib><creatorcontrib>Goddard III, William A</creatorcontrib><creatorcontrib>Grubbs, Robert H</creatorcontrib><title>Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Electrochemical CO2 reduction over Cu could provide value-added multicarbon hydrocarbons and alcohols. Despite recent breakthroughs, it remains a significant challenge to design a catalytic system with high product selectivity. Here we demonstrate that a high selectivity of ethylene (55%) and C2+ products (77%) could be achieved by a highly modular tricomponent copolymer modified Cu electrode, rivaling the best performance using other modified polycrystalline Cu foil catalysts. Such a copolymer can be conveniently prepared by a ring-opening metathesis polymerization, thereby offering a new degree of freedom for tuning the selectivity. Control experiments indicate all three components are essential for the selectivity enhancement. A surface characterization showed that the incorporation of a phenylpyridinium component increased the film robustness against delamination. It was also shown that its superior performance is not due to a morphology change of the Cu underneath. Molecular dynamics (MD) simulations indicate that a combination of increased local CO2 concentration, increased porosity for gas diffusion, and the local electric field effect together contribute to the increased ethylene and C2+ product selectivity.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkF9LwzAUxYMoOKdvfoA8-tKZP22aPkqZTpgM3HwOaXLLOtKmNq2wb2-KA5_uOeceLpcfQo-UrChh9PmkTVgRQ1mayyu0oBkjSUaZuEYLQghLcin4LboL4RRtyiRdoOMeHJix-QFc7hhez2bw5ghtY7TDn2CnuPUdXne6cmBxdcYaH4bG-Lb3HXQjLn3v3bmFAX9429RNFLGv57yPej8NtTZwj25q7QI8XOYSfb2uD-Um2e7e3suXbaIZo2OSUlNbK3IjwIDIcw6sEIWNoaS80gUUNCMGdCa0JJWGPLU25XVVC8mEKDRfoqe_u_3gvycIo2qbYMA53YGfgmKplFkmiOT_1YhNnfw0dPExRYmaYaoZprrA5L__bmke</recordid><startdate>20210224</startdate><enddate>20210224</enddate><creator>Wang, Jianchun</creator><creator>Cheng, Tao</creator><creator>Fenwick, Aidan Q</creator><creator>Baroud, Turki N</creator><creator>Rosas-Hernández, Alonso</creator><creator>Ko, Jeong Hoon</creator><creator>Gan, Quan</creator><creator>Goddard III, William A</creator><creator>Grubbs, Robert H</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0057-7817</orcidid><orcidid>https://orcid.org/0000-0003-2000-3789</orcidid><orcidid>https://orcid.org/0000-0001-6430-9128</orcidid><orcidid>https://orcid.org/0000-0003-0097-5716</orcidid></search><sort><creationdate>20210224</creationdate><title>Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface</title><author>Wang, Jianchun ; Cheng, Tao ; Fenwick, Aidan Q ; Baroud, Turki N ; Rosas-Hernández, Alonso ; Ko, Jeong Hoon ; Gan, Quan ; Goddard III, William A ; Grubbs, Robert H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a221t-41cfdd67c6ece6773e2969dcfd813ba9e9150cea56a80bae74dd43fbf682669a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianchun</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Fenwick, Aidan Q</creatorcontrib><creatorcontrib>Baroud, Turki N</creatorcontrib><creatorcontrib>Rosas-Hernández, Alonso</creatorcontrib><creatorcontrib>Ko, Jeong Hoon</creatorcontrib><creatorcontrib>Gan, Quan</creatorcontrib><creatorcontrib>Goddard III, William A</creatorcontrib><creatorcontrib>Grubbs, Robert H</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianchun</au><au>Cheng, Tao</au><au>Fenwick, Aidan Q</au><au>Baroud, Turki N</au><au>Rosas-Hernández, Alonso</au><au>Ko, Jeong Hoon</au><au>Gan, Quan</au><au>Goddard III, William A</au><au>Grubbs, Robert H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-02-24</date><risdate>2021</risdate><volume>143</volume><issue>7</issue><spage>2857</spage><epage>2865</epage><pages>2857-2865</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Electrochemical CO2 reduction over Cu could provide value-added multicarbon hydrocarbons and alcohols. Despite recent breakthroughs, it remains a significant challenge to design a catalytic system with high product selectivity. Here we demonstrate that a high selectivity of ethylene (55%) and C2+ products (77%) could be achieved by a highly modular tricomponent copolymer modified Cu electrode, rivaling the best performance using other modified polycrystalline Cu foil catalysts. Such a copolymer can be conveniently prepared by a ring-opening metathesis polymerization, thereby offering a new degree of freedom for tuning the selectivity. Control experiments indicate all three components are essential for the selectivity enhancement. A surface characterization showed that the incorporation of a phenylpyridinium component increased the film robustness against delamination. It was also shown that its superior performance is not due to a morphology change of the Cu underneath. Molecular dynamics (MD) simulations indicate that a combination of increased local CO2 concentration, increased porosity for gas diffusion, and the local electric field effect together contribute to the increased ethylene and C2+ product selectivity.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.0c12478</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0057-7817</orcidid><orcidid>https://orcid.org/0000-0003-2000-3789</orcidid><orcidid>https://orcid.org/0000-0001-6430-9128</orcidid><orcidid>https://orcid.org/0000-0003-0097-5716</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-02, Vol.143 (7), p.2857-2865
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2488556083
source Access via American Chemical Society
title Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20CO2%20Electrochemical%20Reduction%20Enabled%20by%20a%20Tricomponent%20Copolymer%20Modifier%20on%20a%20Copper%20Surface&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wang,%20Jianchun&rft.date=2021-02-24&rft.volume=143&rft.issue=7&rft.spage=2857&rft.epage=2865&rft.pages=2857-2865&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c12478&rft_dat=%3Cproquest_acs_j%3E2488556083%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a221t-41cfdd67c6ece6773e2969dcfd813ba9e9150cea56a80bae74dd43fbf682669a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488556083&rft_id=info:pmid/&rfr_iscdi=true