Loading…
Development of a double-layer EPS-ASM2d model to illustrate the effect on mainstream biological phosphorus system in side-stream phosphorus recovery process
In order to deeply investigate the influences of side-stream phosphorus (P) recovery operation on mainstream biological P removal system, an improved activated sludge model no. 2 (ASM2d) was established to illuminate the metabolic processes of P in a side-stream P recovery reactor. The improved ASM2...
Saved in:
Published in: | The Science of the total environment 2021-06, Vol.772, p.144961-144961, Article 144961 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to deeply investigate the influences of side-stream phosphorus (P) recovery operation on mainstream biological P removal system, an improved activated sludge model no. 2 (ASM2d) was established to illuminate the metabolic processes of P in a side-stream P recovery reactor. The improved ASM2d (named D-EPS-ASM2d) was established by extending of the P metabolic processes of double-layer extracellular polymeric substances (EPS) into conventional ASM2d model. The predicted effluent concentrations of COD, NH4, and TP by the D-EPS-ASM2d had good fits with measured values in the side-stream P recovery process. Comparing with conventional ASM2d, the likelihood values of D-EPS-ASM2d related to COD, NH4, and TP effluents were increased from 0.694, 0.837 and 0.762 to 0.868, 0.904 and 0.920, respectively, implying the simulation performances of D-EPS-ASM2d on nutrient removal processes were significantly improved. Besides, the calibrated values of fPP,TEPS was 0.09, 0.102 and 0.123 as side-stream volume (SSV) increasing from 0.3 to 0.9, implying the fraction of P removal by tightly-bound EPS was enhanced with the increase of SSV.
[Display omitted]
•D-EPS-ASM2d was established for simulating the side-stream P recovery process.•A good agreement between model simulations and experimental data was obtained.•The simulation performance was improved comparing with ASM2d.•D-EPS-ASM2d illustrated the fraction of P removal by EPS was improved. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2021.144961 |