Loading…

Evolution of stomatal closure to optimize water‐use efficiency in response to dehydration in ferns and seed plants

Summary Plants control water‐use efficiency (WUE) by regulating water loss and CO2 diffusion through stomata. Variation in stomatal control has been reported among lineages of vascular plants, thus giving rise to the possibility that different lineages may show distinct WUE dynamics in response to w...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2021-06, Vol.230 (5), p.2001-2010
Main Authors: Yang, Yu‐Jie, Bi, Min‐Hui, Nie, Zheng‐Fei, Jiang, Hui, Liu, Xu‐Dong, Fang, Xiang‐Wen, Brodribb, Timothy J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4548-d2b4df73661357109c00b662e098775dcc997d70dc1dd6cb361856fc44d284a13
cites cdi_FETCH-LOGICAL-c4548-d2b4df73661357109c00b662e098775dcc997d70dc1dd6cb361856fc44d284a13
container_end_page 2010
container_issue 5
container_start_page 2001
container_title The New phytologist
container_volume 230
creator Yang, Yu‐Jie
Bi, Min‐Hui
Nie, Zheng‐Fei
Jiang, Hui
Liu, Xu‐Dong
Fang, Xiang‐Wen
Brodribb, Timothy J.
description Summary Plants control water‐use efficiency (WUE) by regulating water loss and CO2 diffusion through stomata. Variation in stomatal control has been reported among lineages of vascular plants, thus giving rise to the possibility that different lineages may show distinct WUE dynamics in response to water stress. Here, we compared the response of gas exchange to decreasing leaf water potential among four ferns and nine seed plant species exposed to a gradually intensifying water deficit. The data collected were combined with those from 339 phylogenetically diverse species obtained from previous studies. In well‐watered angiosperms, the maximum stomatal conductance was high and greater than that required for maximum WUE, but drought stress caused a rapid reduction in stomatal conductance and an increase in WUE in response to elevated concentrations of abscisic acid. However, in ferns, stomata did not open beyond the optimum point corresponding to maximum WUE and actually exhibited a steady WUE in response to dehydration. Thus, seed plants showed improved photosynthetic WUE under water stress. The ability of seed plants to increase WUE could provide them with an advantage over ferns under drought conditions, thereby presumably increasing their fitness under selection pressure by drought.
doi_str_mv 10.1111/nph.17278
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2489598361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489598361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4548-d2b4df73661357109c00b662e098775dcc997d70dc1dd6cb361856fc44d284a13</originalsourceid><addsrcrecordid>eNp1kb9uFDEQhy0EIkeg4AWQJRpSbGJ7_W9LFIUEKQIKkOgsnz2rONq1F9tLdFQ8As_Ik2DuAgUS00wx33wazQ-h55Sc0lZncbk5pYop_QBtKJdDp2mvHqINIUx3ksvPR-hJKbeEkEFI9hgd9b3Qkgq1QfXia5rWGlLEacSlptlWO2E3pbJmwDXhtNQwh2-A72yF_PP7j7UAhnEMLkB0OxwizlCWFMse93Cz89nujW00Qo4F2-hxAfB4mWys5Sl6NNqpwLP7fow-vbn4eH7VXb-_fHv--rpzXHDdebblflS9lLQXipLBEbKVkgEZtFLCOzcMyiviHfVeum0vqRZydJx7prml_TF6dfAuOX1ZoVQzh-JgakdAWothXA9i0G2voS__QW_TmmO7zjBBB0YUYaJRJwfK5VRKhtEsOcw27wwl5ncUpkVh9lE09sW9cd3O4P-Sf37fgLMDcBcm2P3fZN59uDoofwFJbZSJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519207025</pqid></control><display><type>article</type><title>Evolution of stomatal closure to optimize water‐use efficiency in response to dehydration in ferns and seed plants</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yang, Yu‐Jie ; Bi, Min‐Hui ; Nie, Zheng‐Fei ; Jiang, Hui ; Liu, Xu‐Dong ; Fang, Xiang‐Wen ; Brodribb, Timothy J.</creator><creatorcontrib>Yang, Yu‐Jie ; Bi, Min‐Hui ; Nie, Zheng‐Fei ; Jiang, Hui ; Liu, Xu‐Dong ; Fang, Xiang‐Wen ; Brodribb, Timothy J.</creatorcontrib><description>Summary Plants control water‐use efficiency (WUE) by regulating water loss and CO2 diffusion through stomata. Variation in stomatal control has been reported among lineages of vascular plants, thus giving rise to the possibility that different lineages may show distinct WUE dynamics in response to water stress. Here, we compared the response of gas exchange to decreasing leaf water potential among four ferns and nine seed plant species exposed to a gradually intensifying water deficit. The data collected were combined with those from 339 phylogenetically diverse species obtained from previous studies. In well‐watered angiosperms, the maximum stomatal conductance was high and greater than that required for maximum WUE, but drought stress caused a rapid reduction in stomatal conductance and an increase in WUE in response to elevated concentrations of abscisic acid. However, in ferns, stomata did not open beyond the optimum point corresponding to maximum WUE and actually exhibited a steady WUE in response to dehydration. Thus, seed plants showed improved photosynthetic WUE under water stress. The ability of seed plants to increase WUE could provide them with an advantage over ferns under drought conditions, thereby presumably increasing their fitness under selection pressure by drought.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17278</identifier><identifier>PMID: 33586157</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Abscisic Acid ; abscisic acid (ABA) ; Angiosperms ; Carbon dioxide ; Conductance ; Dehydration ; Drought ; drought stress ; Droughts ; fern ; Ferns ; Flowers &amp; plants ; Gas exchange ; Leaves ; Optimization ; Photosynthesis ; Phylogeny ; Plant Leaves ; Plant species ; Plant Stomata ; Plants ; Resistance ; seed plant ; Seeds ; Species diversity ; Stomata ; Stomatal conductance ; Water ; Water deficit ; Water loss ; Water potential ; Water stress ; water‐use efficiency</subject><ispartof>The New phytologist, 2021-06, Vol.230 (5), p.2001-2010</ispartof><rights>2021 The Authors © 2021 New Phytologist Foundation</rights><rights>2021 The Authors New Phytologist © 2021 New Phytologist Foundation.</rights><rights>Copyright © 2021 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4548-d2b4df73661357109c00b662e098775dcc997d70dc1dd6cb361856fc44d284a13</citedby><cites>FETCH-LOGICAL-c4548-d2b4df73661357109c00b662e098775dcc997d70dc1dd6cb361856fc44d284a13</cites><orcidid>0000-0002-4067-1154 ; 0000-0001-6700-2703 ; 0000-0003-2227-2800 ; 0000-0002-4964-6107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33586157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yu‐Jie</creatorcontrib><creatorcontrib>Bi, Min‐Hui</creatorcontrib><creatorcontrib>Nie, Zheng‐Fei</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Liu, Xu‐Dong</creatorcontrib><creatorcontrib>Fang, Xiang‐Wen</creatorcontrib><creatorcontrib>Brodribb, Timothy J.</creatorcontrib><title>Evolution of stomatal closure to optimize water‐use efficiency in response to dehydration in ferns and seed plants</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Plants control water‐use efficiency (WUE) by regulating water loss and CO2 diffusion through stomata. Variation in stomatal control has been reported among lineages of vascular plants, thus giving rise to the possibility that different lineages may show distinct WUE dynamics in response to water stress. Here, we compared the response of gas exchange to decreasing leaf water potential among four ferns and nine seed plant species exposed to a gradually intensifying water deficit. The data collected were combined with those from 339 phylogenetically diverse species obtained from previous studies. In well‐watered angiosperms, the maximum stomatal conductance was high and greater than that required for maximum WUE, but drought stress caused a rapid reduction in stomatal conductance and an increase in WUE in response to elevated concentrations of abscisic acid. However, in ferns, stomata did not open beyond the optimum point corresponding to maximum WUE and actually exhibited a steady WUE in response to dehydration. Thus, seed plants showed improved photosynthetic WUE under water stress. The ability of seed plants to increase WUE could provide them with an advantage over ferns under drought conditions, thereby presumably increasing their fitness under selection pressure by drought.</description><subject>Abscisic Acid</subject><subject>abscisic acid (ABA)</subject><subject>Angiosperms</subject><subject>Carbon dioxide</subject><subject>Conductance</subject><subject>Dehydration</subject><subject>Drought</subject><subject>drought stress</subject><subject>Droughts</subject><subject>fern</subject><subject>Ferns</subject><subject>Flowers &amp; plants</subject><subject>Gas exchange</subject><subject>Leaves</subject><subject>Optimization</subject><subject>Photosynthesis</subject><subject>Phylogeny</subject><subject>Plant Leaves</subject><subject>Plant species</subject><subject>Plant Stomata</subject><subject>Plants</subject><subject>Resistance</subject><subject>seed plant</subject><subject>Seeds</subject><subject>Species diversity</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Water</subject><subject>Water deficit</subject><subject>Water loss</subject><subject>Water potential</subject><subject>Water stress</subject><subject>water‐use efficiency</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kb9uFDEQhy0EIkeg4AWQJRpSbGJ7_W9LFIUEKQIKkOgsnz2rONq1F9tLdFQ8As_Ik2DuAgUS00wx33wazQ-h55Sc0lZncbk5pYop_QBtKJdDp2mvHqINIUx3ksvPR-hJKbeEkEFI9hgd9b3Qkgq1QfXia5rWGlLEacSlptlWO2E3pbJmwDXhtNQwh2-A72yF_PP7j7UAhnEMLkB0OxwizlCWFMse93Cz89nujW00Qo4F2-hxAfB4mWys5Sl6NNqpwLP7fow-vbn4eH7VXb-_fHv--rpzXHDdebblflS9lLQXipLBEbKVkgEZtFLCOzcMyiviHfVeum0vqRZydJx7prml_TF6dfAuOX1ZoVQzh-JgakdAWothXA9i0G2voS__QW_TmmO7zjBBB0YUYaJRJwfK5VRKhtEsOcw27wwl5ncUpkVh9lE09sW9cd3O4P-Sf37fgLMDcBcm2P3fZN59uDoofwFJbZSJ</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Yang, Yu‐Jie</creator><creator>Bi, Min‐Hui</creator><creator>Nie, Zheng‐Fei</creator><creator>Jiang, Hui</creator><creator>Liu, Xu‐Dong</creator><creator>Fang, Xiang‐Wen</creator><creator>Brodribb, Timothy J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4067-1154</orcidid><orcidid>https://orcid.org/0000-0001-6700-2703</orcidid><orcidid>https://orcid.org/0000-0003-2227-2800</orcidid><orcidid>https://orcid.org/0000-0002-4964-6107</orcidid></search><sort><creationdate>202106</creationdate><title>Evolution of stomatal closure to optimize water‐use efficiency in response to dehydration in ferns and seed plants</title><author>Yang, Yu‐Jie ; Bi, Min‐Hui ; Nie, Zheng‐Fei ; Jiang, Hui ; Liu, Xu‐Dong ; Fang, Xiang‐Wen ; Brodribb, Timothy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4548-d2b4df73661357109c00b662e098775dcc997d70dc1dd6cb361856fc44d284a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abscisic Acid</topic><topic>abscisic acid (ABA)</topic><topic>Angiosperms</topic><topic>Carbon dioxide</topic><topic>Conductance</topic><topic>Dehydration</topic><topic>Drought</topic><topic>drought stress</topic><topic>Droughts</topic><topic>fern</topic><topic>Ferns</topic><topic>Flowers &amp; plants</topic><topic>Gas exchange</topic><topic>Leaves</topic><topic>Optimization</topic><topic>Photosynthesis</topic><topic>Phylogeny</topic><topic>Plant Leaves</topic><topic>Plant species</topic><topic>Plant Stomata</topic><topic>Plants</topic><topic>Resistance</topic><topic>seed plant</topic><topic>Seeds</topic><topic>Species diversity</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Water</topic><topic>Water deficit</topic><topic>Water loss</topic><topic>Water potential</topic><topic>Water stress</topic><topic>water‐use efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yu‐Jie</creatorcontrib><creatorcontrib>Bi, Min‐Hui</creatorcontrib><creatorcontrib>Nie, Zheng‐Fei</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Liu, Xu‐Dong</creatorcontrib><creatorcontrib>Fang, Xiang‐Wen</creatorcontrib><creatorcontrib>Brodribb, Timothy J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yu‐Jie</au><au>Bi, Min‐Hui</au><au>Nie, Zheng‐Fei</au><au>Jiang, Hui</au><au>Liu, Xu‐Dong</au><au>Fang, Xiang‐Wen</au><au>Brodribb, Timothy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of stomatal closure to optimize water‐use efficiency in response to dehydration in ferns and seed plants</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-06</date><risdate>2021</risdate><volume>230</volume><issue>5</issue><spage>2001</spage><epage>2010</epage><pages>2001-2010</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Plants control water‐use efficiency (WUE) by regulating water loss and CO2 diffusion through stomata. Variation in stomatal control has been reported among lineages of vascular plants, thus giving rise to the possibility that different lineages may show distinct WUE dynamics in response to water stress. Here, we compared the response of gas exchange to decreasing leaf water potential among four ferns and nine seed plant species exposed to a gradually intensifying water deficit. The data collected were combined with those from 339 phylogenetically diverse species obtained from previous studies. In well‐watered angiosperms, the maximum stomatal conductance was high and greater than that required for maximum WUE, but drought stress caused a rapid reduction in stomatal conductance and an increase in WUE in response to elevated concentrations of abscisic acid. However, in ferns, stomata did not open beyond the optimum point corresponding to maximum WUE and actually exhibited a steady WUE in response to dehydration. Thus, seed plants showed improved photosynthetic WUE under water stress. The ability of seed plants to increase WUE could provide them with an advantage over ferns under drought conditions, thereby presumably increasing their fitness under selection pressure by drought.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33586157</pmid><doi>10.1111/nph.17278</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4067-1154</orcidid><orcidid>https://orcid.org/0000-0001-6700-2703</orcidid><orcidid>https://orcid.org/0000-0003-2227-2800</orcidid><orcidid>https://orcid.org/0000-0002-4964-6107</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2021-06, Vol.230 (5), p.2001-2010
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2489598361
source Wiley-Blackwell Read & Publish Collection
subjects Abscisic Acid
abscisic acid (ABA)
Angiosperms
Carbon dioxide
Conductance
Dehydration
Drought
drought stress
Droughts
fern
Ferns
Flowers & plants
Gas exchange
Leaves
Optimization
Photosynthesis
Phylogeny
Plant Leaves
Plant species
Plant Stomata
Plants
Resistance
seed plant
Seeds
Species diversity
Stomata
Stomatal conductance
Water
Water deficit
Water loss
Water potential
Water stress
water‐use efficiency
title Evolution of stomatal closure to optimize water‐use efficiency in response to dehydration in ferns and seed plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20stomatal%20closure%20to%20optimize%20water%E2%80%90use%20efficiency%20in%20response%20to%20dehydration%20in%20ferns%20and%20seed%20plants&rft.jtitle=The%20New%20phytologist&rft.au=Yang,%20Yu%E2%80%90Jie&rft.date=2021-06&rft.volume=230&rft.issue=5&rft.spage=2001&rft.epage=2010&rft.pages=2001-2010&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17278&rft_dat=%3Cproquest_cross%3E2489598361%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4548-d2b4df73661357109c00b662e098775dcc997d70dc1dd6cb361856fc44d284a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2519207025&rft_id=info:pmid/33586157&rfr_iscdi=true