Loading…

Metal–organic framework (MOF) composite materials for photocatalytic CO2 reduction under visible light

The tridentate ligand 2,4,6-tris(2-(pyridin-4-yl)vinyl)-1,3,5-triazine (TPVT) was designed and synthesized. We prepared metal–organic framework (TPVT-MOFs) crystals containing TPVT, 1,3,5-benzenetricarboxylic acid and cobalt by solvothermal reaction. Then, a series of composite materials with differ...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2021-03, Vol.50 (9), p.3186-3192
Main Authors: Han, Zhen, Fu, Yaomei, Zhang, Yingchao, Zhang, Xiao, Meng, Xing, Zhou, Ziyan, Su, Zhongmin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The tridentate ligand 2,4,6-tris(2-(pyridin-4-yl)vinyl)-1,3,5-triazine (TPVT) was designed and synthesized. We prepared metal–organic framework (TPVT-MOFs) crystals containing TPVT, 1,3,5-benzenetricarboxylic acid and cobalt by solvothermal reaction. Then, a series of composite materials with different contents of TPVT-MOFs were obtained by combining TPVT-MOFs with g-C3N4. Due to the interaction between TPVT-MOFs and g-C3N4, the composite materials have a more favorable valence band (VB) and conduction band (CB) for photocatalytic reduction of CO2 and oxidation of H2O. Under the conditions of visible light and a gas–solid system without a co-catalyst, a photosensitizer and a sacrificial agent, the yield of CO2 reduction by TPVT-MOFs@g-C3N4-10 can reach 56.4 μmol·g−1·h−1, which is 3.2 times that of pure g-C3N4 (17.5 μmol·g−1·h−1). The results of DFT calculations showed that the adsorption of H2O on the TPVT-MOFs@g-C3N4 composite material was more preferential, which promoted the adsorption and reduction of CO2.
ISSN:1477-9226
1477-9234
DOI:10.1039/d1dt00128k