Loading…
Cu2O nanocubes–grafted highly dense Au nanoparticles with modulated electronic structures for improving peroxidase catalytic performances
Based on the intermediate states of metal ions in metal oxide nanomaterials (NMs) that acted as the primary active species, the design of high-performance nanozymes has greatly stimulated current research in diverse biomedical applications. Herein, Cu2O nanocubes-grafted highly dense Au nanoparticle...
Saved in:
Published in: | Talanta (Oxford) 2021-04, Vol.225, p.121990-121990, Article 121990 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on the intermediate states of metal ions in metal oxide nanomaterials (NMs) that acted as the primary active species, the design of high-performance nanozymes has greatly stimulated current research in diverse biomedical applications. Herein, Cu2O nanocubes-grafted highly dense Au nanoparticles (NPs) was developed as an appealing nanozyme for H2O2 colorimetric sensor and antioxidant detections. The obtained Au/Cu2O heterostructures show efficient electron-transfer from metallic NPs to Cu2O nanocubes owing to the difference of Fermi energy between two components. The modulated electronic structure of Au/Cu2O hybrids enables them to possess enhanced peroxidase catalytic activity for the oxidation of 3, 3′, 5, 5′-tetramethylbenzidine (TMB) in the presence of H2O2, which is about 32% higher than that of pristine Cu2O nanocubes. Then, an excellent H2O2 colorimetric sensor was established by using Au/Cu2O heterostructures with a low limit of detection (LOD) of 0.054 μM, which is much lower than the H2O2 allowance level of US FDA regulations (ca.15 μM, 0.05 wt%). The obtained Au/Cu2O nanoproducts exhibit pronounced long-time stability with 95% peroxidase activity maintained after keeping them for 30 days, while residual 64.5% via Cu2O nanocubes. Furthermore, we assessed the anti-oxidative behavior of three natural antioxidants (tannic acid, gallic acid, tartaric acid) with the LODs as low as 0.039, 0.16 and 1.55 μM, respectively, and the antioxidant capacity in the following order: tannic acid > gallic acid > tartaric acid. Therefore, it is believed that the as-prepared Au/Cu2O nanozymes have promising potential applications in fields of biomedicine and food safety.
[Display omitted]
•Cu2O nanocubes-grafted highly dense Au nanoparticles with modulated electronic structures was prepared.•The obtained Au/Cu2O heterostructures showed efficient electron-transfer from metallic NPs to Cu2O nanocubes.•Compared with bare Cu2O, the Au/Cu2O heterostructures exhibited enhanced peroxidase catalytic activity.•Based on Au/Cu2O nanoproducts, a versatile colorimetric biosensor for H2O2 and three antioxidants detection was established. |
---|---|
ISSN: | 0039-9140 1873-3573 |
DOI: | 10.1016/j.talanta.2020.121990 |