Loading…

Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins

A major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2021-03, Vol.125 (8), p.2134-2145
Main Authors: Dubini, Romeo C. A, Jung, Huihun, Skidmore, Chloe H, Demirel, Melik C, Rovó, Petra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963
cites cdi_FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963
container_end_page 2145
container_issue 8
container_start_page 2134
container_title The journal of physical chemistry. B
container_volume 125
creator Dubini, Romeo C. A
Jung, Huihun
Skidmore, Chloe H
Demirel, Melik C
Rovó, Petra
description A major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together with the rational design of synthetic materials, is currently hindered by our limited understanding of the sequence–structure–property relationship. Here, employing state-of-the-art nuclear magnetic resonance (NMR) spectroscopy, we link the atomistic structural and dynamic properties of an artificial bioinspired tandem repeat protein TR­(1,11) to its stunning macroscopic properties including high elasticity, self-healing capabilities, and record-holding proton conductivity among biological materials. We show that the hydration-induced structural rearrangement of the amorphous Gly-rich soft segment and the ordered Ala-rich hard segment is the key to the material’s outstanding physical properties. We found that in the hydrated state both the Ala-rich ordered and Gly-rich disordered parts contribute to the formation of the nanoconfined β-sheets, thereby enhancing the strength and toughness of the material. This restructuring is accompanied by fast proline ring puckering and backbone cis–trans isomerization at the water–protein interface, which in turn enhances the elasticity and the thermal conductivity of the hydrated films. Our in-depth characterization provides a solid ground for the development of next-generation materials with improved properties.
doi_str_mv 10.1021/acs.jpcb.0c11505
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2490606737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490606737</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwM6GMDKTYce3EI1RAKxWBILvl2BfJVeIU2xn670lpYGM43enuvSfdh9A1wXOCM3KvdJhvd7qaY00Iw-wETQnLcDpUfjrOnGA-QRchbDHOWFbwczShlAlGMz5Fr6u98SrazqVrZ3oNJvmMvtex96pJSq9csIdrSKxLHm3X2hai1UmpnIE2-YAdqJi8-y6CdeESndWqCXA19hkqn5_K5SrdvL2slw-bVNG8iGmeAxNFwVRdKE1rsgDCuBJVYYzhDPJhUytSV1hzJjSjgLMChKmZyrEQnM7Q7TF257uvHkKUrQ0amkY56Pogs4XAHPOc5oMUH6XadyF4qOXO21b5vSRYHhjKgaE8MJQjw8FyM6b3VQvmz_ALbRDcHQU_1q73bvj1_7xvJqZ-DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490606737</pqid></control><display><type>article</type><title>Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Dubini, Romeo C. A ; Jung, Huihun ; Skidmore, Chloe H ; Demirel, Melik C ; Rovó, Petra</creator><creatorcontrib>Dubini, Romeo C. A ; Jung, Huihun ; Skidmore, Chloe H ; Demirel, Melik C ; Rovó, Petra</creatorcontrib><description>A major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together with the rational design of synthetic materials, is currently hindered by our limited understanding of the sequence–structure–property relationship. Here, employing state-of-the-art nuclear magnetic resonance (NMR) spectroscopy, we link the atomistic structural and dynamic properties of an artificial bioinspired tandem repeat protein TR­(1,11) to its stunning macroscopic properties including high elasticity, self-healing capabilities, and record-holding proton conductivity among biological materials. We show that the hydration-induced structural rearrangement of the amorphous Gly-rich soft segment and the ordered Ala-rich hard segment is the key to the material’s outstanding physical properties. We found that in the hydrated state both the Ala-rich ordered and Gly-rich disordered parts contribute to the formation of the nanoconfined β-sheets, thereby enhancing the strength and toughness of the material. This restructuring is accompanied by fast proline ring puckering and backbone cis–trans isomerization at the water–protein interface, which in turn enhances the elasticity and the thermal conductivity of the hydrated films. Our in-depth characterization provides a solid ground for the development of next-generation materials with improved properties.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c11505</identifier><identifier>PMID: 33595326</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biomaterials and Membranes ; Biomimetics ; Magnetic Resonance Spectroscopy ; Proline ; Proteins ; Tandem Repeat Sequences</subject><ispartof>The journal of physical chemistry. B, 2021-03, Vol.125 (8), p.2134-2145</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963</citedby><cites>FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963</cites><orcidid>0000-0001-6045-271X ; 0000-0001-8729-7326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33595326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubini, Romeo C. A</creatorcontrib><creatorcontrib>Jung, Huihun</creatorcontrib><creatorcontrib>Skidmore, Chloe H</creatorcontrib><creatorcontrib>Demirel, Melik C</creatorcontrib><creatorcontrib>Rovó, Petra</creatorcontrib><title>Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>A major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together with the rational design of synthetic materials, is currently hindered by our limited understanding of the sequence–structure–property relationship. Here, employing state-of-the-art nuclear magnetic resonance (NMR) spectroscopy, we link the atomistic structural and dynamic properties of an artificial bioinspired tandem repeat protein TR­(1,11) to its stunning macroscopic properties including high elasticity, self-healing capabilities, and record-holding proton conductivity among biological materials. We show that the hydration-induced structural rearrangement of the amorphous Gly-rich soft segment and the ordered Ala-rich hard segment is the key to the material’s outstanding physical properties. We found that in the hydrated state both the Ala-rich ordered and Gly-rich disordered parts contribute to the formation of the nanoconfined β-sheets, thereby enhancing the strength and toughness of the material. This restructuring is accompanied by fast proline ring puckering and backbone cis–trans isomerization at the water–protein interface, which in turn enhances the elasticity and the thermal conductivity of the hydrated films. Our in-depth characterization provides a solid ground for the development of next-generation materials with improved properties.</description><subject>B: Biomaterials and Membranes</subject><subject>Biomimetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Proline</subject><subject>Proteins</subject><subject>Tandem Repeat Sequences</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwM6GMDKTYce3EI1RAKxWBILvl2BfJVeIU2xn670lpYGM43enuvSfdh9A1wXOCM3KvdJhvd7qaY00Iw-wETQnLcDpUfjrOnGA-QRchbDHOWFbwczShlAlGMz5Fr6u98SrazqVrZ3oNJvmMvtex96pJSq9csIdrSKxLHm3X2hai1UmpnIE2-YAdqJi8-y6CdeESndWqCXA19hkqn5_K5SrdvL2slw-bVNG8iGmeAxNFwVRdKE1rsgDCuBJVYYzhDPJhUytSV1hzJjSjgLMChKmZyrEQnM7Q7TF257uvHkKUrQ0amkY56Pogs4XAHPOc5oMUH6XadyF4qOXO21b5vSRYHhjKgaE8MJQjw8FyM6b3VQvmz_ALbRDcHQU_1q73bvj1_7xvJqZ-DA</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Dubini, Romeo C. A</creator><creator>Jung, Huihun</creator><creator>Skidmore, Chloe H</creator><creator>Demirel, Melik C</creator><creator>Rovó, Petra</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6045-271X</orcidid><orcidid>https://orcid.org/0000-0001-8729-7326</orcidid></search><sort><creationdate>20210304</creationdate><title>Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins</title><author>Dubini, Romeo C. A ; Jung, Huihun ; Skidmore, Chloe H ; Demirel, Melik C ; Rovó, Petra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B: Biomaterials and Membranes</topic><topic>Biomimetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Proline</topic><topic>Proteins</topic><topic>Tandem Repeat Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubini, Romeo C. A</creatorcontrib><creatorcontrib>Jung, Huihun</creatorcontrib><creatorcontrib>Skidmore, Chloe H</creatorcontrib><creatorcontrib>Demirel, Melik C</creatorcontrib><creatorcontrib>Rovó, Petra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubini, Romeo C. A</au><au>Jung, Huihun</au><au>Skidmore, Chloe H</au><au>Demirel, Melik C</au><au>Rovó, Petra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-03-04</date><risdate>2021</risdate><volume>125</volume><issue>8</issue><spage>2134</spage><epage>2145</epage><pages>2134-2145</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>A major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together with the rational design of synthetic materials, is currently hindered by our limited understanding of the sequence–structure–property relationship. Here, employing state-of-the-art nuclear magnetic resonance (NMR) spectroscopy, we link the atomistic structural and dynamic properties of an artificial bioinspired tandem repeat protein TR­(1,11) to its stunning macroscopic properties including high elasticity, self-healing capabilities, and record-holding proton conductivity among biological materials. We show that the hydration-induced structural rearrangement of the amorphous Gly-rich soft segment and the ordered Ala-rich hard segment is the key to the material’s outstanding physical properties. We found that in the hydrated state both the Ala-rich ordered and Gly-rich disordered parts contribute to the formation of the nanoconfined β-sheets, thereby enhancing the strength and toughness of the material. This restructuring is accompanied by fast proline ring puckering and backbone cis–trans isomerization at the water–protein interface, which in turn enhances the elasticity and the thermal conductivity of the hydrated films. Our in-depth characterization provides a solid ground for the development of next-generation materials with improved properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33595326</pmid><doi>10.1021/acs.jpcb.0c11505</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6045-271X</orcidid><orcidid>https://orcid.org/0000-0001-8729-7326</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2021-03, Vol.125 (8), p.2134-2145
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2490606737
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects B: Biomaterials and Membranes
Biomimetics
Magnetic Resonance Spectroscopy
Proline
Proteins
Tandem Repeat Sequences
title Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration-Induced%20Structural%20Transitions%20in%20Biomimetic%20Tandem%20Repeat%20Proteins&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Dubini,%20Romeo%20C.%20A&rft.date=2021-03-04&rft.volume=125&rft.issue=8&rft.spage=2134&rft.epage=2145&rft.pages=2134-2145&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c11505&rft_dat=%3Cproquest_cross%3E2490606737%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490606737&rft_id=info:pmid/33595326&rfr_iscdi=true