Loading…
Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins
A major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together...
Saved in:
Published in: | The journal of physical chemistry. B 2021-03, Vol.125 (8), p.2134-2145 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963 |
---|---|
cites | cdi_FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963 |
container_end_page | 2145 |
container_issue | 8 |
container_start_page | 2134 |
container_title | The journal of physical chemistry. B |
container_volume | 125 |
creator | Dubini, Romeo C. A Jung, Huihun Skidmore, Chloe H Demirel, Melik C Rovó, Petra |
description | A major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together with the rational design of synthetic materials, is currently hindered by our limited understanding of the sequence–structure–property relationship. Here, employing state-of-the-art nuclear magnetic resonance (NMR) spectroscopy, we link the atomistic structural and dynamic properties of an artificial bioinspired tandem repeat protein TR(1,11) to its stunning macroscopic properties including high elasticity, self-healing capabilities, and record-holding proton conductivity among biological materials. We show that the hydration-induced structural rearrangement of the amorphous Gly-rich soft segment and the ordered Ala-rich hard segment is the key to the material’s outstanding physical properties. We found that in the hydrated state both the Ala-rich ordered and Gly-rich disordered parts contribute to the formation of the nanoconfined β-sheets, thereby enhancing the strength and toughness of the material. This restructuring is accompanied by fast proline ring puckering and backbone cis–trans isomerization at the water–protein interface, which in turn enhances the elasticity and the thermal conductivity of the hydrated films. Our in-depth characterization provides a solid ground for the development of next-generation materials with improved properties. |
doi_str_mv | 10.1021/acs.jpcb.0c11505 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2490606737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490606737</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwM6GMDKTYce3EI1RAKxWBILvl2BfJVeIU2xn670lpYGM43enuvSfdh9A1wXOCM3KvdJhvd7qaY00Iw-wETQnLcDpUfjrOnGA-QRchbDHOWFbwczShlAlGMz5Fr6u98SrazqVrZ3oNJvmMvtex96pJSq9csIdrSKxLHm3X2hai1UmpnIE2-YAdqJi8-y6CdeESndWqCXA19hkqn5_K5SrdvL2slw-bVNG8iGmeAxNFwVRdKE1rsgDCuBJVYYzhDPJhUytSV1hzJjSjgLMChKmZyrEQnM7Q7TF257uvHkKUrQ0amkY56Pogs4XAHPOc5oMUH6XadyF4qOXO21b5vSRYHhjKgaE8MJQjw8FyM6b3VQvmz_ALbRDcHQU_1q73bvj1_7xvJqZ-DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490606737</pqid></control><display><type>article</type><title>Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Dubini, Romeo C. A ; Jung, Huihun ; Skidmore, Chloe H ; Demirel, Melik C ; Rovó, Petra</creator><creatorcontrib>Dubini, Romeo C. A ; Jung, Huihun ; Skidmore, Chloe H ; Demirel, Melik C ; Rovó, Petra</creatorcontrib><description>A major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together with the rational design of synthetic materials, is currently hindered by our limited understanding of the sequence–structure–property relationship. Here, employing state-of-the-art nuclear magnetic resonance (NMR) spectroscopy, we link the atomistic structural and dynamic properties of an artificial bioinspired tandem repeat protein TR(1,11) to its stunning macroscopic properties including high elasticity, self-healing capabilities, and record-holding proton conductivity among biological materials. We show that the hydration-induced structural rearrangement of the amorphous Gly-rich soft segment and the ordered Ala-rich hard segment is the key to the material’s outstanding physical properties. We found that in the hydrated state both the Ala-rich ordered and Gly-rich disordered parts contribute to the formation of the nanoconfined β-sheets, thereby enhancing the strength and toughness of the material. This restructuring is accompanied by fast proline ring puckering and backbone cis–trans isomerization at the water–protein interface, which in turn enhances the elasticity and the thermal conductivity of the hydrated films. Our in-depth characterization provides a solid ground for the development of next-generation materials with improved properties.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c11505</identifier><identifier>PMID: 33595326</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biomaterials and Membranes ; Biomimetics ; Magnetic Resonance Spectroscopy ; Proline ; Proteins ; Tandem Repeat Sequences</subject><ispartof>The journal of physical chemistry. B, 2021-03, Vol.125 (8), p.2134-2145</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963</citedby><cites>FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963</cites><orcidid>0000-0001-6045-271X ; 0000-0001-8729-7326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33595326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubini, Romeo C. A</creatorcontrib><creatorcontrib>Jung, Huihun</creatorcontrib><creatorcontrib>Skidmore, Chloe H</creatorcontrib><creatorcontrib>Demirel, Melik C</creatorcontrib><creatorcontrib>Rovó, Petra</creatorcontrib><title>Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>A major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together with the rational design of synthetic materials, is currently hindered by our limited understanding of the sequence–structure–property relationship. Here, employing state-of-the-art nuclear magnetic resonance (NMR) spectroscopy, we link the atomistic structural and dynamic properties of an artificial bioinspired tandem repeat protein TR(1,11) to its stunning macroscopic properties including high elasticity, self-healing capabilities, and record-holding proton conductivity among biological materials. We show that the hydration-induced structural rearrangement of the amorphous Gly-rich soft segment and the ordered Ala-rich hard segment is the key to the material’s outstanding physical properties. We found that in the hydrated state both the Ala-rich ordered and Gly-rich disordered parts contribute to the formation of the nanoconfined β-sheets, thereby enhancing the strength and toughness of the material. This restructuring is accompanied by fast proline ring puckering and backbone cis–trans isomerization at the water–protein interface, which in turn enhances the elasticity and the thermal conductivity of the hydrated films. Our in-depth characterization provides a solid ground for the development of next-generation materials with improved properties.</description><subject>B: Biomaterials and Membranes</subject><subject>Biomimetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Proline</subject><subject>Proteins</subject><subject>Tandem Repeat Sequences</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwM6GMDKTYce3EI1RAKxWBILvl2BfJVeIU2xn670lpYGM43enuvSfdh9A1wXOCM3KvdJhvd7qaY00Iw-wETQnLcDpUfjrOnGA-QRchbDHOWFbwczShlAlGMz5Fr6u98SrazqVrZ3oNJvmMvtex96pJSq9csIdrSKxLHm3X2hai1UmpnIE2-YAdqJi8-y6CdeESndWqCXA19hkqn5_K5SrdvL2slw-bVNG8iGmeAxNFwVRdKE1rsgDCuBJVYYzhDPJhUytSV1hzJjSjgLMChKmZyrEQnM7Q7TF257uvHkKUrQ0amkY56Pogs4XAHPOc5oMUH6XadyF4qOXO21b5vSRYHhjKgaE8MJQjw8FyM6b3VQvmz_ALbRDcHQU_1q73bvj1_7xvJqZ-DA</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Dubini, Romeo C. A</creator><creator>Jung, Huihun</creator><creator>Skidmore, Chloe H</creator><creator>Demirel, Melik C</creator><creator>Rovó, Petra</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6045-271X</orcidid><orcidid>https://orcid.org/0000-0001-8729-7326</orcidid></search><sort><creationdate>20210304</creationdate><title>Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins</title><author>Dubini, Romeo C. A ; Jung, Huihun ; Skidmore, Chloe H ; Demirel, Melik C ; Rovó, Petra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B: Biomaterials and Membranes</topic><topic>Biomimetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Proline</topic><topic>Proteins</topic><topic>Tandem Repeat Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubini, Romeo C. A</creatorcontrib><creatorcontrib>Jung, Huihun</creatorcontrib><creatorcontrib>Skidmore, Chloe H</creatorcontrib><creatorcontrib>Demirel, Melik C</creatorcontrib><creatorcontrib>Rovó, Petra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubini, Romeo C. A</au><au>Jung, Huihun</au><au>Skidmore, Chloe H</au><au>Demirel, Melik C</au><au>Rovó, Petra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-03-04</date><risdate>2021</risdate><volume>125</volume><issue>8</issue><spage>2134</spage><epage>2145</epage><pages>2134-2145</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>A major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together with the rational design of synthetic materials, is currently hindered by our limited understanding of the sequence–structure–property relationship. Here, employing state-of-the-art nuclear magnetic resonance (NMR) spectroscopy, we link the atomistic structural and dynamic properties of an artificial bioinspired tandem repeat protein TR(1,11) to its stunning macroscopic properties including high elasticity, self-healing capabilities, and record-holding proton conductivity among biological materials. We show that the hydration-induced structural rearrangement of the amorphous Gly-rich soft segment and the ordered Ala-rich hard segment is the key to the material’s outstanding physical properties. We found that in the hydrated state both the Ala-rich ordered and Gly-rich disordered parts contribute to the formation of the nanoconfined β-sheets, thereby enhancing the strength and toughness of the material. This restructuring is accompanied by fast proline ring puckering and backbone cis–trans isomerization at the water–protein interface, which in turn enhances the elasticity and the thermal conductivity of the hydrated films. Our in-depth characterization provides a solid ground for the development of next-generation materials with improved properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33595326</pmid><doi>10.1021/acs.jpcb.0c11505</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6045-271X</orcidid><orcidid>https://orcid.org/0000-0001-8729-7326</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2021-03, Vol.125 (8), p.2134-2145 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_2490606737 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | B: Biomaterials and Membranes Biomimetics Magnetic Resonance Spectroscopy Proline Proteins Tandem Repeat Sequences |
title | Hydration-Induced Structural Transitions in Biomimetic Tandem Repeat Proteins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration-Induced%20Structural%20Transitions%20in%20Biomimetic%20Tandem%20Repeat%20Proteins&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Dubini,%20Romeo%20C.%20A&rft.date=2021-03-04&rft.volume=125&rft.issue=8&rft.spage=2134&rft.epage=2145&rft.pages=2134-2145&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c11505&rft_dat=%3Cproquest_cross%3E2490606737%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a378t-77e59885af8ac3f14e156a9b8ddd65e7f14fa1fb0c659c53e028e9df5a709963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490606737&rft_id=info:pmid/33595326&rfr_iscdi=true |