Loading…

Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics

Stretchable electronics find widespread uses in a variety of applications such as wearable electronics, on-skin electronics, soft robotics and bioelectronics. Stretchable electronic devices conventionally built with elastomeric thin films show a lack of permeability, which not only impedes wearing c...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2021-06, Vol.20 (6), p.859-868
Main Authors: Ma, Zhijun, Huang, Qiyao, Xu, Qi, Zhuang, Qiuna, Zhao, Xin, Yang, Yuhe, Qiu, Hua, Yang, Zhilu, Wang, Cong, Chai, Yang, Zheng, Zijian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stretchable electronics find widespread uses in a variety of applications such as wearable electronics, on-skin electronics, soft robotics and bioelectronics. Stretchable electronic devices conventionally built with elastomeric thin films show a lack of permeability, which not only impedes wearing comfort and creates skin inflammation over long-term wearing but also limits the design form factors of device integration in the vertical direction. Here, we report a stretchable conductor that is fabricated by simply coating or printing liquid metal onto an electrospun elastomeric fibre mat. We call this stretchable conductor a liquid-metal fibre mat. Liquid metal hanging among the elastomeric fibres self-organizes into a laterally mesh-like and vertically buckled structure, which offers simultaneously high permeability, stretchability, conductivity and electrical stability. Furthermore, the liquid-metal fibre mat shows good biocompatibility and smart adaptiveness to omnidirectional stretching over 1,800% strain. We demonstrate the use of a liquid-metal fibre mat as a building block to realize highly permeable, multifunctional monolithic stretchable electronics. Coating of liquid metals on electrospun elastomeric fibre mats leads to the realization of conducting buckled meshes that can be stretched up to 1,800% strain while preserving both stable electrical properties and permeability to air and moisture.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-020-00902-3