Loading…
Possible mechanisms for the renoprotective action of adipose-derived mesenchymal stem cells with CD44-targeted hyaluronic acid against renal ischemia
The present study aimed to investigate the invitro preconditioning of adipose-derived mesenchymal stem cells (ADMSCs) with CD44-targeted hyalournic acid (HA) on ischemic kidney injury in rats. Ninety male Sprague Dawley rats were randomly allocated into the following groups; i) sham group, ii) contr...
Saved in:
Published in: | Life sciences (1973) 2021-05, Vol.272, p.119221-119221, Article 119221 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study aimed to investigate the invitro preconditioning of adipose-derived mesenchymal stem cells (ADMSCs) with CD44-targeted hyalournic acid (HA) on ischemic kidney injury in rats. Ninety male Sprague Dawley rats were randomly allocated into the following groups; i) sham group, ii) control group: rats exposed to 45 min left renal ischemia with saline treatment, iii) HA group as control group but rats treated with HA, iv) ADMSCs group as control but rats treated with ADMSCs v) HA + ADMSCs group as ADMSCs but rats treated with ADMSCs preconditioned with CD44-tageted HA for 14 days. We found that treattment with either ADMSCs or HA + ADMSCs caused significant decrease in the elevated serum creatinine and BUN and malondialdehyde (MDA) concentrations and expression of TGF-β1, fibronectin, collagen type I, inducible nitric oxide synthease (iNOS) and microRNAs (miR-21, miR-17-5p, miR-10a) in kidney and significant increase in creatinine clearance, superoxide dismutase (SOD), reduced glutathione (GSH) and the expression of Bcl2, vascular endothelial growth factor (VEGF), Wnt/β-catenin pathway genes in kidney compared to control group (p |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2021.119221 |