Loading…
Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip
The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes...
Saved in:
Published in: | Lab on a chip 2021-04, Vol.21 (7), p.1395-148 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743 |
container_end_page | 148 |
container_issue | 7 |
container_start_page | 1395 |
container_title | Lab on a chip |
container_volume | 21 |
creator | Perottoni, Simone Neto, Nuno G. B Di Nitto, Cesare Dmitriev, Ruslan I Raimondi, Manuela Teresa Monaghan, Michael G |
description | The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised
in vitro
system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by
in silico
models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals.
The stem cell niche at the perivascular space plays a role in dictating the fate of stem cells within it. This study predicts
in silico
and models the perivascular space, in a miniaturised bioreactor, with non-invasive assessment of cell metabolism. |
doi_str_mv | 10.1039/d0lc01034k |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2491953255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491953255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2qiOXr0nsrS72gSgGPP5L4iBZaECtxgXPk2BPFWyfZ2kkr_nuyLF0kTjOa-c3T0zxCvgC7ACb0pWPBsrmTvz-RI5CFyBiU-vO-18WCHKe0ZgyUzMtDshAiZ4qX_IiEu36MxmIIUzCRBlNjyJqISB2OaEc_9HRoaIcJe9s-dybQNGJHtxfzdDT1EHzq6D8_tr6nhm4w-r8m2Ve53tsWs6HPTGZbvzklB40JCc_e6gl5-nnzuLzNVg-_7pZXq8xKBWNWl1xIpyU30jpdC811qRwXeQFoQWihoXGF5uCshdzZsjayAAVQF0rXhRQn5Hynu4nDnwnTWHU-bR2bHocpVVxq0EpwpWb0-wd0PUyxn91VXDEtda6hnKkfO8rGIaWITbWJvjPxuQJWbTOortlq-ZrB_Qx_e5Oc6g7dHv3_9Bn4ugNisvvte4jiBbdbiwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509496918</pqid></control><display><type>article</type><title>Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Perottoni, Simone ; Neto, Nuno G. B ; Di Nitto, Cesare ; Dmitriev, Ruslan I ; Raimondi, Manuela Teresa ; Monaghan, Michael G</creator><creatorcontrib>Perottoni, Simone ; Neto, Nuno G. B ; Di Nitto, Cesare ; Dmitriev, Ruslan I ; Raimondi, Manuela Teresa ; Monaghan, Michael G</creatorcontrib><description>The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised
in vitro
system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by
in silico
models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals.
The stem cell niche at the perivascular space plays a role in dictating the fate of stem cells within it. This study predicts
in silico
and models the perivascular space, in a miniaturised bioreactor, with non-invasive assessment of cell metabolism.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d0lc01034k</identifier><identifier>PMID: 33605282</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Differentiation (biology) ; Flow velocity ; Fluorescence ; Human tissues ; Image resolution ; Metabolism ; Microfluidics ; Modelling ; Oxygen ; Oxygen tension ; Shear stress ; Stem cells</subject><ispartof>Lab on a chip, 2021-04, Vol.21 (7), p.1395-148</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743</citedby><cites>FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743</cites><orcidid>0000-0003-2585-7206 ; 0000-0002-0347-8718 ; 0000-0001-5467-8720 ; 0000-0003-1640-2170 ; 0000-0002-5530-4998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33605282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perottoni, Simone</creatorcontrib><creatorcontrib>Neto, Nuno G. B</creatorcontrib><creatorcontrib>Di Nitto, Cesare</creatorcontrib><creatorcontrib>Dmitriev, Ruslan I</creatorcontrib><creatorcontrib>Raimondi, Manuela Teresa</creatorcontrib><creatorcontrib>Monaghan, Michael G</creatorcontrib><title>Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised
in vitro
system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by
in silico
models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals.
The stem cell niche at the perivascular space plays a role in dictating the fate of stem cells within it. This study predicts
in silico
and models the perivascular space, in a miniaturised bioreactor, with non-invasive assessment of cell metabolism.</description><subject>Differentiation (biology)</subject><subject>Flow velocity</subject><subject>Fluorescence</subject><subject>Human tissues</subject><subject>Image resolution</subject><subject>Metabolism</subject><subject>Microfluidics</subject><subject>Modelling</subject><subject>Oxygen</subject><subject>Oxygen tension</subject><subject>Shear stress</subject><subject>Stem cells</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa2qiOXr0nsrS72gSgGPP5L4iBZaECtxgXPk2BPFWyfZ2kkr_nuyLF0kTjOa-c3T0zxCvgC7ACb0pWPBsrmTvz-RI5CFyBiU-vO-18WCHKe0ZgyUzMtDshAiZ4qX_IiEu36MxmIIUzCRBlNjyJqISB2OaEc_9HRoaIcJe9s-dybQNGJHtxfzdDT1EHzq6D8_tr6nhm4w-r8m2Ve53tsWs6HPTGZbvzklB40JCc_e6gl5-nnzuLzNVg-_7pZXq8xKBWNWl1xIpyU30jpdC811qRwXeQFoQWihoXGF5uCshdzZsjayAAVQF0rXhRQn5Hynu4nDnwnTWHU-bR2bHocpVVxq0EpwpWb0-wd0PUyxn91VXDEtda6hnKkfO8rGIaWITbWJvjPxuQJWbTOortlq-ZrB_Qx_e5Oc6g7dHv3_9Bn4ugNisvvte4jiBbdbiwg</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Perottoni, Simone</creator><creator>Neto, Nuno G. B</creator><creator>Di Nitto, Cesare</creator><creator>Dmitriev, Ruslan I</creator><creator>Raimondi, Manuela Teresa</creator><creator>Monaghan, Michael G</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2585-7206</orcidid><orcidid>https://orcid.org/0000-0002-0347-8718</orcidid><orcidid>https://orcid.org/0000-0001-5467-8720</orcidid><orcidid>https://orcid.org/0000-0003-1640-2170</orcidid><orcidid>https://orcid.org/0000-0002-5530-4998</orcidid></search><sort><creationdate>20210407</creationdate><title>Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip</title><author>Perottoni, Simone ; Neto, Nuno G. B ; Di Nitto, Cesare ; Dmitriev, Ruslan I ; Raimondi, Manuela Teresa ; Monaghan, Michael G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differentiation (biology)</topic><topic>Flow velocity</topic><topic>Fluorescence</topic><topic>Human tissues</topic><topic>Image resolution</topic><topic>Metabolism</topic><topic>Microfluidics</topic><topic>Modelling</topic><topic>Oxygen</topic><topic>Oxygen tension</topic><topic>Shear stress</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perottoni, Simone</creatorcontrib><creatorcontrib>Neto, Nuno G. B</creatorcontrib><creatorcontrib>Di Nitto, Cesare</creatorcontrib><creatorcontrib>Dmitriev, Ruslan I</creatorcontrib><creatorcontrib>Raimondi, Manuela Teresa</creatorcontrib><creatorcontrib>Monaghan, Michael G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perottoni, Simone</au><au>Neto, Nuno G. B</au><au>Di Nitto, Cesare</au><au>Dmitriev, Ruslan I</au><au>Raimondi, Manuela Teresa</au><au>Monaghan, Michael G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>21</volume><issue>7</issue><spage>1395</spage><epage>148</epage><pages>1395-148</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised
in vitro
system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by
in silico
models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals.
The stem cell niche at the perivascular space plays a role in dictating the fate of stem cells within it. This study predicts
in silico
and models the perivascular space, in a miniaturised bioreactor, with non-invasive assessment of cell metabolism.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33605282</pmid><doi>10.1039/d0lc01034k</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2585-7206</orcidid><orcidid>https://orcid.org/0000-0002-0347-8718</orcidid><orcidid>https://orcid.org/0000-0001-5467-8720</orcidid><orcidid>https://orcid.org/0000-0003-1640-2170</orcidid><orcidid>https://orcid.org/0000-0002-5530-4998</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2021-04, Vol.21 (7), p.1395-148 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_2491953255 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Differentiation (biology) Flow velocity Fluorescence Human tissues Image resolution Metabolism Microfluidics Modelling Oxygen Oxygen tension Shear stress Stem cells |
title | Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20label-free%20detection%20of%20mesenchymal%20stem%20cell%20metabolism%20within%20a%20perivascular%20niche-on-a-chip&rft.jtitle=Lab%20on%20a%20chip&rft.au=Perottoni,%20Simone&rft.date=2021-04-07&rft.volume=21&rft.issue=7&rft.spage=1395&rft.epage=148&rft.pages=1395-148&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d0lc01034k&rft_dat=%3Cproquest_pubme%3E2491953255%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509496918&rft_id=info:pmid/33605282&rfr_iscdi=true |