Loading…

Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip

The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2021-04, Vol.21 (7), p.1395-148
Main Authors: Perottoni, Simone, Neto, Nuno G. B, Di Nitto, Cesare, Dmitriev, Ruslan I, Raimondi, Manuela Teresa, Monaghan, Michael G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743
cites cdi_FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743
container_end_page 148
container_issue 7
container_start_page 1395
container_title Lab on a chip
container_volume 21
creator Perottoni, Simone
Neto, Nuno G. B
Di Nitto, Cesare
Dmitriev, Ruslan I
Raimondi, Manuela Teresa
Monaghan, Michael G
description The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised in vitro system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by in silico models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals. The stem cell niche at the perivascular space plays a role in dictating the fate of stem cells within it. This study predicts in silico and models the perivascular space, in a miniaturised bioreactor, with non-invasive assessment of cell metabolism.
doi_str_mv 10.1039/d0lc01034k
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2491953255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491953255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2qiOXr0nsrS72gSgGPP5L4iBZaECtxgXPk2BPFWyfZ2kkr_nuyLF0kTjOa-c3T0zxCvgC7ACb0pWPBsrmTvz-RI5CFyBiU-vO-18WCHKe0ZgyUzMtDshAiZ4qX_IiEu36MxmIIUzCRBlNjyJqISB2OaEc_9HRoaIcJe9s-dybQNGJHtxfzdDT1EHzq6D8_tr6nhm4w-r8m2Ve53tsWs6HPTGZbvzklB40JCc_e6gl5-nnzuLzNVg-_7pZXq8xKBWNWl1xIpyU30jpdC811qRwXeQFoQWihoXGF5uCshdzZsjayAAVQF0rXhRQn5Hynu4nDnwnTWHU-bR2bHocpVVxq0EpwpWb0-wd0PUyxn91VXDEtda6hnKkfO8rGIaWITbWJvjPxuQJWbTOortlq-ZrB_Qx_e5Oc6g7dHv3_9Bn4ugNisvvte4jiBbdbiwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509496918</pqid></control><display><type>article</type><title>Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Perottoni, Simone ; Neto, Nuno G. B ; Di Nitto, Cesare ; Dmitriev, Ruslan I ; Raimondi, Manuela Teresa ; Monaghan, Michael G</creator><creatorcontrib>Perottoni, Simone ; Neto, Nuno G. B ; Di Nitto, Cesare ; Dmitriev, Ruslan I ; Raimondi, Manuela Teresa ; Monaghan, Michael G</creatorcontrib><description>The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised in vitro system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by in silico models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals. The stem cell niche at the perivascular space plays a role in dictating the fate of stem cells within it. This study predicts in silico and models the perivascular space, in a miniaturised bioreactor, with non-invasive assessment of cell metabolism.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d0lc01034k</identifier><identifier>PMID: 33605282</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Differentiation (biology) ; Flow velocity ; Fluorescence ; Human tissues ; Image resolution ; Metabolism ; Microfluidics ; Modelling ; Oxygen ; Oxygen tension ; Shear stress ; Stem cells</subject><ispartof>Lab on a chip, 2021-04, Vol.21 (7), p.1395-148</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743</citedby><cites>FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743</cites><orcidid>0000-0003-2585-7206 ; 0000-0002-0347-8718 ; 0000-0001-5467-8720 ; 0000-0003-1640-2170 ; 0000-0002-5530-4998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33605282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perottoni, Simone</creatorcontrib><creatorcontrib>Neto, Nuno G. B</creatorcontrib><creatorcontrib>Di Nitto, Cesare</creatorcontrib><creatorcontrib>Dmitriev, Ruslan I</creatorcontrib><creatorcontrib>Raimondi, Manuela Teresa</creatorcontrib><creatorcontrib>Monaghan, Michael G</creatorcontrib><title>Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised in vitro system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by in silico models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals. The stem cell niche at the perivascular space plays a role in dictating the fate of stem cells within it. This study predicts in silico and models the perivascular space, in a miniaturised bioreactor, with non-invasive assessment of cell metabolism.</description><subject>Differentiation (biology)</subject><subject>Flow velocity</subject><subject>Fluorescence</subject><subject>Human tissues</subject><subject>Image resolution</subject><subject>Metabolism</subject><subject>Microfluidics</subject><subject>Modelling</subject><subject>Oxygen</subject><subject>Oxygen tension</subject><subject>Shear stress</subject><subject>Stem cells</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa2qiOXr0nsrS72gSgGPP5L4iBZaECtxgXPk2BPFWyfZ2kkr_nuyLF0kTjOa-c3T0zxCvgC7ACb0pWPBsrmTvz-RI5CFyBiU-vO-18WCHKe0ZgyUzMtDshAiZ4qX_IiEu36MxmIIUzCRBlNjyJqISB2OaEc_9HRoaIcJe9s-dybQNGJHtxfzdDT1EHzq6D8_tr6nhm4w-r8m2Ve53tsWs6HPTGZbvzklB40JCc_e6gl5-nnzuLzNVg-_7pZXq8xKBWNWl1xIpyU30jpdC811qRwXeQFoQWihoXGF5uCshdzZsjayAAVQF0rXhRQn5Hynu4nDnwnTWHU-bR2bHocpVVxq0EpwpWb0-wd0PUyxn91VXDEtda6hnKkfO8rGIaWITbWJvjPxuQJWbTOortlq-ZrB_Qx_e5Oc6g7dHv3_9Bn4ugNisvvte4jiBbdbiwg</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Perottoni, Simone</creator><creator>Neto, Nuno G. B</creator><creator>Di Nitto, Cesare</creator><creator>Dmitriev, Ruslan I</creator><creator>Raimondi, Manuela Teresa</creator><creator>Monaghan, Michael G</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2585-7206</orcidid><orcidid>https://orcid.org/0000-0002-0347-8718</orcidid><orcidid>https://orcid.org/0000-0001-5467-8720</orcidid><orcidid>https://orcid.org/0000-0003-1640-2170</orcidid><orcidid>https://orcid.org/0000-0002-5530-4998</orcidid></search><sort><creationdate>20210407</creationdate><title>Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip</title><author>Perottoni, Simone ; Neto, Nuno G. B ; Di Nitto, Cesare ; Dmitriev, Ruslan I ; Raimondi, Manuela Teresa ; Monaghan, Michael G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differentiation (biology)</topic><topic>Flow velocity</topic><topic>Fluorescence</topic><topic>Human tissues</topic><topic>Image resolution</topic><topic>Metabolism</topic><topic>Microfluidics</topic><topic>Modelling</topic><topic>Oxygen</topic><topic>Oxygen tension</topic><topic>Shear stress</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perottoni, Simone</creatorcontrib><creatorcontrib>Neto, Nuno G. B</creatorcontrib><creatorcontrib>Di Nitto, Cesare</creatorcontrib><creatorcontrib>Dmitriev, Ruslan I</creatorcontrib><creatorcontrib>Raimondi, Manuela Teresa</creatorcontrib><creatorcontrib>Monaghan, Michael G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perottoni, Simone</au><au>Neto, Nuno G. B</au><au>Di Nitto, Cesare</au><au>Dmitriev, Ruslan I</au><au>Raimondi, Manuela Teresa</au><au>Monaghan, Michael G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>21</volume><issue>7</issue><spage>1395</spage><epage>148</epage><pages>1395-148</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised in vitro system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by in silico models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals. The stem cell niche at the perivascular space plays a role in dictating the fate of stem cells within it. This study predicts in silico and models the perivascular space, in a miniaturised bioreactor, with non-invasive assessment of cell metabolism.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33605282</pmid><doi>10.1039/d0lc01034k</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2585-7206</orcidid><orcidid>https://orcid.org/0000-0002-0347-8718</orcidid><orcidid>https://orcid.org/0000-0001-5467-8720</orcidid><orcidid>https://orcid.org/0000-0003-1640-2170</orcidid><orcidid>https://orcid.org/0000-0002-5530-4998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2021-04, Vol.21 (7), p.1395-148
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_2491953255
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Differentiation (biology)
Flow velocity
Fluorescence
Human tissues
Image resolution
Metabolism
Microfluidics
Modelling
Oxygen
Oxygen tension
Shear stress
Stem cells
title Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20label-free%20detection%20of%20mesenchymal%20stem%20cell%20metabolism%20within%20a%20perivascular%20niche-on-a-chip&rft.jtitle=Lab%20on%20a%20chip&rft.au=Perottoni,%20Simone&rft.date=2021-04-07&rft.volume=21&rft.issue=7&rft.spage=1395&rft.epage=148&rft.pages=1395-148&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d0lc01034k&rft_dat=%3Cproquest_pubme%3E2491953255%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-b8234d942a4cd9b392985d23671ec139391fd7921dcc16dc8ba471511b759b743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509496918&rft_id=info:pmid/33605282&rfr_iscdi=true